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Preface

The idea to write this book came about from many years of interacting with students, both under-
graduate and postgraduate. There seemed to be a disconnect between the theoretical treatment of
mechanical vibrations and the signal processing procedures needed to measure vibration in the
laboratory. They are often treated as separate subjects, sometimes taught in different departments
by different lecturers. When the first author of the book came to UNESP Ilha Solteira in Brazil at the
end of 2010, he decided to teach a course that combined the two approaches. The notes developed
for that course form the basis of this book.

At the beginning of 2010 Bin Tang came as an academic visitor, supported from the China
Scholarship Council (Grant No. 2009821053), to the Institute of Sound and Vibration Research
(ISVR) in Southampton, UK, where Mike Brennan had a position as professor of engineering
dynamics. They worked together for about one year on research related to nonlinear vibrations.
Bin Tang then returned to his position as an assistant professor at Dalian University of Technology
(DUT), and Mike departed for Brazil. The following year Mike visited Bin Tang in DUT, and
about two years later, Bin Tang came to Brazil as an academic visitor, supported by the Brazilian
National Council for Scientific and Technological Development (CNPq). He stayed for two years,
and during this time they had many discussions about the topics in this book, honing the ideas
and concepts. A decision was made to write the book, but this never really began in earnest
until the COVID 19 pandemic struck in 2020. This curtailed the much-enjoyed academic activity
of travelling and meeting colleagues around the world, and freed up some time to work on
the book.

The authors are extremely grateful for the many discussions with both colleagues and students
over the years that have helped to form the perspective from which the book is written. The authors
would like to acknowledge the financial support of the Brazilian National Council for Scientific and
Technological Development (CNPq), (Grant No. 401360/2012-1) and the National Natural Science
Foundation of China (Grant No. 11672058). It is hoped that students who are new to the topic, or
those who are more experienced in some areas of either vibration or signal processing will find the
book useful.

Michael J. Brennan
São Paulo State University (UNESP)
Ilha Solteira
Brazil
Bin Tang
Dalian University of Technology
China
January 2022
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1

1

Introduction

1.1 Introduction

Knowledge of the dynamic behaviour of systems and structures becomes increasingly important as
organisations and companies strive to produce devices and products that outperform the competi-
tion. This means that engineers from a wide range of disciplines covering, for example, automotive,
acoustical, aeronautical, aerospace, civil, mechanical, and marine engineering, are required to have
knowledge of vibration engineering. Of course, some will need to be experts in this discipline, but
others will simply need to be aware of some basic issues. This means that university engineer-
ing programmes for all the disciplines mentioned above generally have a course in mechanical
vibrations. These courses tackle the subject in different ways, depending on the particular disci-
pline. For example, civil engineers start from the study of the static behaviour of structures. Once
this has been mastered, they move to the dynamic behaviour of structures, i.e. they start at a fre-
quency of 0 Hz, and then investigate the behaviour as frequency increases. This sequence of study
is similar for many disciplines, with the exception, perhaps, of physicists and acoustical engineers,
who may tackle the subject using a wave description of the structural dynamics. Acoustical engi-
neers generally restrict their frequency range of interest to that of human hearing, which is from
about 20 Hz to 20 kHz. Thus, the way in which mechanical vibration is taught may vary enormously
from course to course. To illustrate the diversity of the topic, Michael Brennan, the first author of
this book, started his career in vibration engineering by investigating high-frequency (>500 Hz)
structure-borne noise through a helicopter gear box support strut, whereas Bin Tang, the second
author of this book, started his career by investigating the relatively low-frequency torsional vibra-
tion (<30 Hz) of a ship’s propellor shaft.

The terms ‘mechanical vibration’ and ‘engineering vibration’ are used interchangeably in this
book. To master this topic from a theoretical and a practical point of view, the student is required
to have some knowledge of physics, mathematics, and engineering. This is illustrated schemati-
cally in the Venn diagram shown in Figure 1.1. It is acknowledged that not all vibration engineers
have the same profile. For example, some have a much more mathematical bias, focusing on the-
oretical aspects of the subject, perhaps working as researchers in universities, and others follow a
much more practical career, working on the implementation of vibration control strategies in con-
sulting or engineering companies. Notwithstanding this, it is the firm belief of the authors, that
engineers/researchers will only gain mastery of the topic, if their knowledge base is in the area of
the overlapping circles shown in Figure 1.1.

It is not the aim of this book to provide basic knowledge in mechanical vibrations, although it is
expected that the reader will gain some insight into the dynamical behaviour of a simple vibrating

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations

http://www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
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2 1 Introduction

Mathematics

Physics

Engineering

Study of vibration engineering

Figure 1.1 The subject of vibration engineering.

system. There are several textbooks devoted to basic vibration theory, for example, Tse et al. (1978),
Thompson (2002), Clough and Penzien (2003), de Silva (2006), Inman (2007), and Rao (2016).
There is also the classic book (Den Hartog, 1956) that offers some excellent physical descriptions
of vibrating systems. The aim of this book is to provide a text that will help to bridge the gap
between vibration theory and laboratory-based experimental work. Many students study vibra-
tion from a purely theoretical point of view. In some institutions, the lecturers may not even be
experts in vibration engineering, and so they teach by closely following a textbook. Inevitably, this
is often a mathematical exposition, with the underlying physics being frequently masked by math-
ematical complexity. Accordingly, many students do not gain the necessary physical insight, which
would be helpful in their future careers. One way to overcome this problem is to formulate vibra-
tion problems in a more physical way in terms of variables that are measurable in a laboratory
setting. In many situations, these are forces applied to the system or structure and the resulting
accelerations/velocities/displacements. This means that before the theory is taught, some thought
should be given to an accompanying experiment, to ensure that the output from the theoretical
model involves measurable variables. It is, of course, desirable that any course has a practical com-
ponent to complement and support the theory.

Much of the physical insight gained in vibration engineering, whether it be theoretical or exper-
imental, occurs by viewing data in the frequency domain. However, all vibration signals are mea-
sured in the time domain, so these signals must be transformed to the frequency domain using
signal processing techniques. This, of course, means that the vibration engineer should have some
knowledge of the way in which this is done, and the mathematical basis behind the techniques. The
way data are processed in practice is to first sample the data and then to work on them in digitised
form using a computer. Processing sampled data brings further complications, which are discussed
in Chapter 4. Many students of vibration engineering may have studied some signal processing
techniques, such as Fourier analysis, but often this is done in a mathematics department, and
therefore is often not related directly to the vibration theory taught in the engineering departments.
There can thus be a chasm between the taught vibration theory and the way in which correspond-
ing experimental data are captured and processed to enable comparisons between predictions and
reality. It is the intention of this book to bring together these two disciplines and to give the reader
some experience in applying the required signal processing techniques on simulated vibration data.
There is one book on signal processing, which is specifically tailored for sound and vibration engi-
neers (Shin and Hammond 2008), and there are other more general textbooks on the subject, which
may help the reader with some of the more theoretical aspects, for example Papoulis (1962, 1977),
Oppenheim and Schafer (1975), Oppenheim et al. (1997), and Bendat and Piersol (1980, 2000).
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Figure 1.2 Schematic diagram showing the scope of the book.

The scope of the book is encapsulated in the Venn diagram shown in the top part of Figure 1.2.
It can be seen that it contains three elements, vibration theory, vibration experiments, and signal
processing. At the end of the book the reader will have been exposed to elements of these three
topics and will have carried out some ‘virtual’ experiments using simulated data. Through the theo-
retical development and exercises in the book, some proficiency should be gained, which hopefully
will result in improved physical insight into both vibration theory and the rationale between the
choices to be made in the signal processing procedures. At the end of the book, the reader should
be in a position to carry out an experiment in the laboratory and process the measured signals,
provided that the experimenter has been given some additional tuition on the practical aspects of
how to set up an experiment and how to handle the transducers correctly.

1.2 Typical Laboratory-Based Vibration Tests

Two typical vibration tests are shown in Figure 1.3. In the top part of the figure, an electrodynamic
shaker is used to excite the structure under test, and in the lower part of the figure an instrumented
impact hammer is used to excite the structure. In both cases, the resulting vibration response is
measured using an accelerometer, as shown in the figure. Details of some typical signals, which are
used to drive the shaker and the type of force signal generated by the impact hammer, are discussed
in Chapter 5. For the shaker excitation, a signal is provided by a signal generator, which is then
passed through a power amplifier, before supplying the shaker. The signal then has enough power
to drive the shaker. In many cases the signal generator forms part of a software package in a com-
puter. The force is measured using a force gauge attached to the structure, and this signal together
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Signal 
generator
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Signal 
conditioning 

amplifiers Structure under test

Signal 
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Force gauge

Accelerometer

Accelerometer

Instrumented 
impact hammer

Figure 1.3 Typical experimental set-ups to measure a frequency response function (FRF). Source: Modified
from Waters (2013) / Taylor & Francis.

with the signal from the accelerometer are passed through conditioning amplifiers before entering
the signal analyser, and being viewed in analogue form using the oscilloscope. For hammer exci-
tation, the force gauge is in the tip of the hammer and measures the force applied to the structure
during the impact. The signals from the force gauge and the accelerometer are processed in a
similar way for both shaker and force excitation. Further details on how to set up a vibration experi-
ment similar to that shown in Figure 1.3 are given in Waters (2013). General textbooks on vibration
testing have been written by Ewins (2000), McConnell and Varoto (2008), Brandt (2011), and
Avitabile (2017).

The test set-ups shown in Figure 1.3. are designed to measure a single input and single output
(SISO). More accelerometers can be added at different points on the structure to form a single
input multi-output (SIMO) system, and an example of this type of measurement is described in
Chapter 9. As mentioned above, more insight is gained by examining the data in the frequency
domain – specifically the output for a given input at each frequency of excitation. This is achieved
by studying this relationship which is called the frequency response function (FRF). The FRF is
the backbone of this book, both theoretically and experimentally. It is derived analytically for a
simple vibrating system in Chapter 2, and the way in which it is estimated from measurements or
simulations using time domain force and acceleration data is described in Chapter 8.
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1.3 Relationship Between the Input and Output for a SISO System

The relationships between the signals from a vibration measurement are shown in Figure 1.4.
However, note that in this figure, displacement rather than acceleration is the response variable.
This has been chosen for convenience, but also note that acceleration signals can easily be
converted to velocity or displacement, by time-domain integration as discussed in Appendix A.
The engineering units are shown for all the variables in Figure 1.4, as this is considered to
be important in the context of this book and is rarely provided in books on signal processing.
The input to the system is a force f e(t) which has the SI unit of N, and the displacement response
x(t) which has the unit of m. The vibrating system connecting the input to the output has a time
domain description h(t), which is the impulse response function (IRF) and has units of m/Ns.
The displacement output can be determined by convolving f e(t) with h(t), which is discussed
further in Chapter 2, and is used extensively throughout the book.

As mentioned above, it is necessary to transform the data to the frequency domain. This is
achieved by using the Fourier transform. The Fourier transform of the force time history is given by
 {f e(t)} and results in F(j𝜔), where j =

√
−1 and 𝜔 is angular frequency, which has units of rad/s;

F(j𝜔) has units of N/Hz. Note that in this book time domain quantities are denoted by lower-case
italic symbols and frequency domain quantities are denoted by upper-case italic symbols.
The Fourier transform of the displacement time history is given by X(j𝜔) =  {x(t)}, which has
units of m/Hz. Chapter 3 is devoted to the Fourier transform applied to continuous and sampled
time histories. Note that frequency domain data can be transformed to the time domain, and this is
achieved using the inverse Fourier transform, which is also discussed in Chapter 3. The frequency
domain description of the system is the FRF, denoted by H(j𝜔). This is related to the IRF by the
Fourier transform, i.e. H(j𝜔) =  {h(t)} and has units of m/N. The output in the frequency domain
X(j𝜔) can be determined by multiplying F(j𝜔) with H(j𝜔), and this is discussed in Chapter 2.

You will become aware as you read this book that most of the analysis is conducted using FRFs.
The theoretical FRFs shown are analytical because the systems discussed are relatively simple.
However, if modelling is carried out using numerical tools such as finite element analysis (FEA),
Petyt (2010), which is used extensively in industry, it is also important that structures are modelled
so that FRFs can be easily extracted for analysis and comparison with measurements.

Time domain

Frequency

domain 

m

Ns

m

N
m

Hz

N

Hz

m m  Hz

N N Hz
=  

Force input Vibrating system

Displacement

response

fe(t)  (N) x(t)  (m)

F( j!)

F ( j!)
H ( j!)

X ( j!)

H( j!)

h(t)

X ( j!)

Figure 1.4 Block diagram representing of a simple single-input, single-output vibration test. Note that the
response in this case is displacement for convenience, which can be obtained by integrating acceleration
twice as described in Appendix A.
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1.4 A Virtual Vibration Test

As mentioned previously, the aim of this book is to bridge the gap between vibration theory and
vibration experiments. The book can also be used by students who do not have access to a labora-
tory to conduct experiments. They can carry out ‘virtual’ experiments. In a real experiment both
force input and displacement output are measured, but in a virtual experiment the output data are
generated using a model of the system. The concept is shown in Figure 1.5. The virtual experiment
has a major advantage as a learning tool, in that the processed data in terms of an IRF or FRF, can be
compared with the original model, which was used to generate the output time series. In this way,
any artefacts in the data due to the processing can be clearly identified, which is not always possible
in a real experiment.

Several methods can be used to determine the displacement output data, three of which are used
in this book, and are described in Chapter 6. They are:

1. If the differential equation(s) of the vibrating system are known, then the response can be calcu-
lated by numerical integration of the equation(s) of motion. Generally, this is a straightforward
procedure using a computer and is described in Appendix D.

2. If the IRF of the vibrating system is known, the response can be determined using convolution.
Again, this is a relatively straightforward procedure and is described in Appendix G.

3. If the FRF of the vibrating system is known, the input force time history can be transformed to
the frequency domain using the Fourier transform. The frequency domain response can then be
calculated by multiplying this by the FRF, which can then be transformed to the time domain
using the inverse Fourier transform to give the time history of the response. Alternatively,
the FRF can be transformed to give the IRF and then the method in 2 can be used.

Frequency response functions FRFs

Processing

Force input
Model of a 

vibrating system
Displacement

response

Analysis

Insight/understanding

m

Ns

x(t)  (m)fe(t)  (N)
h(t)

Figure 1.5 The process and rationale for a virtual vibration experiment.
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1.5 Some Notes on the Book

The first thing that should be highlighted, is that this book is written in a heuristic way. Some
mathematical proofs and details are omitted for ease of understanding. The more mathematically
minded reader can readily find these details in the literature cited in this chapter. Secondly, the
book is designed to be followed chapter by chapter to cover all the basic topics needed to conduct
a virtual experiment. However, if the reader has detailed knowledge of certain topics, for example
vibration theory, then Chapter 2 can be skipped, or if the reader is proficient in Fourier analysis,
then Chapter 3 can be skipped.

The book is written with a novice in mind, so that very little previous knowledge is assumed.
Accordingly, the book could be used as an undergraduate or a postgraduate text. The treatment
of most topics, however, is brief, even though it is self-contained, so many readers may need to
consult other basic texts, for example Rao (2016) for vibration or Shin and Hammond (2008) for
signal processing, for more detailed information.

Each chapter contains some computer programs written using MATLAB, which are provided
to illustrate some of the concepts and to give the reader some practice in applying the techniques
presented to consolidate their understanding. The programs can be found on the accompanying
website. Although MATLAB is used for convenience to illustrate the computational procedures, the
code can be readily modified to run in other software packages such as GNU Octave1 or python2,
which are open source.

References

Avitabile, P. (2017). Modal Testing: A Practitioner’s Guide. Wiley.
Bendat, J.S. and Piersol, A.G. (1980). Engineering Applications of Correlation and Spectral Analysis.

Wiley.
Bendat, J.S. and Piersol, A.G. (2000). Random Data: Analysis and Measurement Procedures, 3rd Edition.

Wiley-Interscience.
Brandt, A. (2011). Noise and Vibration Analysis: Signal Analysis and Experimental Procedures. Wiley.
Clough, R.W. and Penzien, J. (2003). Dynamics of Structures, 3rd Edition. Computers & Structures, Inc.
Ewins, D.J. (2000). Modal Testing: Theory, Practice and Application, 2nd Edition. Research Studies Press.
Den Hartog, J.P. (1956). Mechanical Vibrations, 4th Edition. McGraw-Hill.
Inman, D.J. (2007). Engineering Vibration, 3rd Edition. Pearson.
McConnell, K.G. and Varoto, P.S. (2008). Vibration Testing: Theory and Practice, 2nd Edition. Wiley.
Oppenheim, A.V. and Schafer, R.W. (1975). Digital Signal Processing. Prentice Hall International.
Oppenheim, A.V., Willsky, A.S., and Hamid Nawab, S. (1997). Signals and Systems, 2nd Edition.

Prentice Hall International.
Papoulis, A. (1962). The Fourier Integral and Its Applications, McGraw-Hill.
Papoulis, A. (1977). Signal Analysis, McGraw-Hill.
Petyt, M. (2010). Introduction to Finite Element Vibration Analysis, 2nd Edition. Cambridge University

Press.
Rao, S.S. (2016). Mechanical Vibrations, 6th Edition. Pearson.

1 https://www.gnu.org/software/octave/index (accessed 27 December 2021)
2 https://www.python.org/ (accessed 27 December 2021)

https://www.gnu.org/software/octave/index
https://www.python.org/


�

� �

�

8 1 Introduction

Shin, K. and Hammond, J.K. (2008). Fundamentals of Signal Processing for Sound and Vibration
Engineers. Wiley.

de Silva, C.W. (2006). Vibration: Fundamentals and Practice, 2nd Edition. CRC Press.
Thompson, W.T. (2002). Theory of Vibration with Applications, 3rd Edition. CBS Publishers &

Distributors.
Tse, F.S., Morse, I.E., and Hinkle, R.T. (1978). Mechanical Vibrations – Theory and Applications,

2nd Edition. Ally and Bacon, Inc.
Waters, T.P. (2013). Vibration Testing, Chapter 9 in Fundamentals of Sound and Vibration,

(eds. F.J. Fahy and D.J. Thompson). CRC Press.



�

� �

�

9

2

Fundamentals of Vibration

2.1 Introduction

A vibrating system can be characterised in both the time and frequency domain. The quantities used
to characterise the system can be obtained theoretically or experimentally, and are used extensively
in this book. This chapter is devoted to deriving these quantities for a simple mechanical system.
Thorough knowledge of such a system is essential for the deeper understanding of mechanical
vibrations in general. Further, an understanding of the dynamics of a vibrating system in terms of
its physical properties is extremely helpful in the interpretation of experimental data. No previous
knowledge of vibrations is assumed in this chapter, as all the results are derived from first principles,
requiring only a basic understanding of mechanics.

2.2 Basic Concepts – Mass, Stiffness, and Damping

There are three fundamental physical properties of a vibrating system. They are mass, stiffness, and
damping. Although they tend to exist in a distributed form in the real world, for an initial study
of vibration it is convenient to represent them in lumped parameter form using idealised elements
as shown in Figure 2.1. Note that only translational linear elements are considered for simplicity,
rather than rotational and/or nonlinear elements, which also exist in the real world. The interested
reader is referred to more-in-depth texts on linear and nonlinear vibration, such as Tse et al. (1978),
Inman (2007), Worden and Tomlinson (2001), Thomsen (2003), Kovacic and Brennan (2011), and
Rao (2016).

The stiffness element is represented by a linear, massless spring with stiffness k, which has units
of N/m. It is shown in Figure 2.1ai. The equations relating the forces at each end of the spring to
the corresponding displacements are given by

f1(t) = k(x1(t) − x2(t)) (2.1a)

and

f2(t) = k(x2(t) − x1(t)). (2.1b)

Summing Eqs. (2.1a) and (2.1b) results in f 2(t) = − f 1(t), which shows that a force passes unattenu-
ated through the stiffness element. If the right-hand end of the spring is blocked, i.e. it is connected
to a rigid foundation as shown in Figure 2.1aii, then it is described simply by f k(t) = kx(t), where
f k(t) = f 1(t) and x(t) = x1(t).

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations

http://www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
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k

x1(t) x2(t)
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f1(t) f2(t)
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k

c c

(ai) (aii)

(bi) (bii)

(ci) (cii)

mm

. .
x(t)
.

x(t)
. .

x(t)
. .

Figure 2.1 Fundamental lumped parameter elements. (ai) Linear spring. (aii) Linear spring with one end
attached to ground. (bi) Linear viscous damper. (bii) Linear viscous damper with one end attached to
ground. (ci) Lumped mass. (cii) Lumped mass with one free end.

For convenience, the damping element is represented by a linear viscous damper, with damping
coefficient c, which has units of Ns/m. The damper has infinitely stiff (rigid), massless links that
connect to the damping element, which is shown in Figure 2.1bi. The equations relating the forces
at each end of the damper to the corresponding velocities are given by

f1(t) = c(ẋ1(t) − ẋ2(t)) (2.2a)

and

f2(t) = c(ẋ2(t) − ẋ1(t)), (2.2b)

where the overdot denotes differentiation with respect to time. Summing Eqs. (2.2a) and (2.2b)
results in f 2(t) = − f 1(t), which is the same result as for the stiffness element. Thus, a force also
passes through the damping element unattenuated. If the right-hand end of the damper is blocked,
i.e. it is connected to a rigid foundation as shown in Figure 2.1bii, then it is described simply by
fc(t) = cẋ(t), where again f c(t) = f 1(t) and ẋ(t) = ẋ1(t).

A mass element is represented by a point mass, with mass m, which has units of Ns2/m or kg.
The mass is a point in space, i.e. it has no dimension. It also has no damping, is infinitely stiff,
and is shown in Figure 2.1ci. The equation relating the forces to the acceleration of the mass is
given by

f1(t) + f2(t) = mẍ(t). (2.3)

Note that the equation describing the behaviour of a mass is fundamentally different from those
that describe the stiffness and damping elements. In this case, a force does not pass through the
mass unattenuated, because f2(t) = mẍ(t) − f1(t). It makes no sense to block the mass, so in this case
f 2(t) is set to zero as shown in Figure 2.1cii, so that fm(t) = mẍ(t).

Note that the mass and stiffness elements store energy in the form of kinetic energy and potential
energy, respectively, and the damping element dissipates energy.
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2.3 Single Degree-of-Freedom System

As mechanical systems generally consist of a combination of mass, stiffness, and damping, the
elements described in Section 2.1 are assembled as shown in Figure 2.2a. This is called a single
degree-of-freedom (SDOF) system as only one coordinate is required to describe the motion.
The drawing in Figure 2.2a is a conventional diagram of an SDOF system, but an alternative way
of drawing the same system is shown in Figure 2.2b, Hixson (1976) and Gardonio and Brennan
(2002). Note the convention used to represent a mass in Figure 2.2b, which is the same as that
used in (Hixson 1976), which means that the mass is ‘connected’ to an inertial system of reference.
The advantage of using the alternative representation of an SDOF system is that it is clear in this
case that the three elements are connected in parallel, so that the excitation force f e(t) is split three
ways, such that

fm(t) + fc(t) + fk(t) = fe(t). (2.4a)

Substituting for the forces of the individual elements results in

mẍ(t)
⏟⏟⏟

inertia
force

+ cẋ(t)
⏟⏟⏟

damping
force

+ kx(t)
⏟⏟⏟

stiffness
force

= fe(t), (2.4b)

which is the equation of motion for an SDOF system that is found in most elementary texts on
vibration.

2.4 Free Vibration

The SDOF system vibrates freely when it is set in motion, and the excitation force is removed. The
subsequent motion of the mass is then dependent only on the inertia, damping, and stiffness forces.
In this case, Eq. (2.4b) becomes

mẍ(t) + cẋ(t) + kx(t) = 0, (2.5a)

which means that the inertia force, the damping force, and the stiffness force sum to zero at each
instant in time. Because these forces are proportional to the acceleration, velocity, and displacement
of the mass, respectively, the time histories corresponding to these quantities must all have the same
shape. For this to occur, the displacement should be described as an exponential function (which
maintains its shape when differentiated). This can have a real, an imaginary, or a complex exponent
depending upon the amount of damping in the system.

Before determining the solution to Eq. (2.5a) it is convenient to divide each term by m to give

ẍ(t) + 2𝜁𝜔nẋ(t) + 𝜔2
nx(t) = 0, (2.5b)

fe(t)

fm (t) fk (t) fc (t)

fe(t)

x(t)
x(t)m

k c
ck

m

Massless rigid link

(a) (b)

Figure 2.2 SDOF mass-spring-damper system. (a) Conventional diagram. (b) Alternative representation.
Source: (b) Based on Hixson (1976) and Gardonio and Brennan (2002).
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where 𝜔n =
√

k∕m is the undamped natural frequency of the system, which is the frequency at
which the system oscillates freely in the absence of damping. It has units of rad/s; 𝜁 = c∕2

√
mk =

c∕2m𝜔n is the damping ratio, which is the damping in the system c divided by the critical damping
given by 2

√
mk. Consider first the case when the system is undamped, i.e. when 𝜁 = 0. If the mass is

now perturbed from its original position (which is called the static equilibrium position) and then
released, it oscillates harmonically. The displacement can thus be described by a sine or a cosine
function with an amplitude corresponding to the initial displacement. Because there is no damping
in the system it continues to oscillate with this amplitude and frequency indefinitely, with the mass
storing kinetic energy and the spring storing potential energy. When the mass is at its extreme
position, its velocity is zero, and the mass has no kinetic energy. Thus, at this point in the cycle all
the energy in the system is stored as potential energy in the spring. When the mass passes through
the static equilibrium position it has maximum velocity, and all the energy in the system is stored
as kinetic energy in the mass at this point in the cycle. As the system oscillates through each cycle,
the stored energy is continuously passed from the spring to the mass and back again twice within
each cycle, because of the reasons described above. When 𝜁 = 1, the system is critically damped
and does not oscillate freely. There are also solutions for 𝜁 > 1, which is an overdamped condition,
and for 𝜁 < 0, which is an unstable oscillator, but these cases are not considered in this book. The
range of damping is restricted to the range 0≤ 𝜁 ≤ 1, as this covers most practical vibration cases.

The solution to Eq. (2.5b) has the form

x(t) = Aest, (2.6)

where A and s can either be real or complex numbers. Noting that ẋ(t) = Asest and ẍ(t) = As2est,
substituting Eq. (2.6) and its derivatives into Eq. (2.5b) and dividing by Aest results in

s2 + 2𝜁𝜔ns + 𝜔2
n = 0. (2.7)

This is called the characteristic equation of the system. Because the damping ratio is considered
to be within the range 0≤ 𝜁 ≤ 1, the solution to Eq. (2.7) is given by

s1,2 = −𝜁𝜔n ± j𝜔d, (2.8a,b)

where 𝜔d = 𝜔n
√

1 − 𝜁2 is the damped natural frequency, which is the frequency of free vibration
of an SDOF mass-spring-damper system, and j =

√
−1. Note that when 𝜁 = 0, 𝜔d = 𝜔n, and when

𝜁 = 1, 𝜔d = 0. Because there are two solutions for s, which are complex conjugates, i.e. s2 = s∗1,
where * denotes the complex conjugate, and the fact that x(t) must be real, means that the solution
to Eq. (2.6) should be of the form

x(t) = Aes1t + A∗es∗1 t

2
(2.9a)

Substituting Eq. (2.8a,b) into Eq. (2.9a), noting that A = |A|ej𝜓 and rearranging, results in

x(t) = |A|
2

e−𝜁𝜔nt (ej(𝜔dt+𝜓) + e−j(𝜔dt+𝜓)) (2.9b)

Using Euler’s formula e±j𝜃 = cos 𝜃 ± j sin 𝜃, Eq. (2.9b) can be written as

x(t) = |A|e−𝜁𝜔nt cos(𝜔dt + 𝜓) (2.9c)

or

x(t) = |A|e−𝜁𝜔nt

⏟⏞⏟⏞⏟

envelope

sin(𝜔dt + 𝜙)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

oscillation

, (2.9d)
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Figure 2.3 Free vibration of an SDOF system.

where 𝜙 = 𝜓 +𝜋/2. Equations (2.9c) and (2.9d) describe the free vibration displacement of an
underdamped mass-spring-damper SDOF system. An illustration of Eq. (2.9d) for a lightly damped
system is shown in Figure 2.3. The solid line in this figure gives the complete response and the
dashed line gives the envelope of the response. The mass oscillates at the damped natural frequency
of𝜔d, which corresponds to a damped natural period of Td = 2𝜋/𝜔d. It is clear that damping has two
effects. In most practical situations, the main effect is to influence the rate at which the vibration
decays, and a secondary effect is to reduce the frequency at which the system oscillates.

2.5 Impulse Response Function (IRF)

As mentioned in Chapter 1, the impulse response function (IRF) of a vibrating system is a cor-
nerstone of dynamic analysis, because it relates the time domain input of a system to its output
(response) by way of convolution. To determine the theoretical IRF of a system, it is impacted by a
force that has the form of a delta function, and the response is calculated. The IRF of the vibrating
system is its response to the delta function. Some details concerning the delta function are given in
Appendix E.

An impulse is a force which acts on a system for a very short time period, providing finite momen-
tum to the system. Such an impulse is shown in Figure 2.4. The applied force f̂e∕𝜀, acts for a short

fe(t)

(a) (b)

fe(t)

t t

fe
ε

ε

�(t – �)

�

š

Figure 2.4 An impulsive force and its idealised representation as a delta function in the case when 𝜀→ 0
and f̂e = 1. (a) An impulsive force. (b) A delta function applied at time t = 𝛼.
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time duration 𝜀, so that the impulse, which is the area under the force curve, is given by

f̂e = Area =
f̂e

𝜀
𝜀, (2.10)

which has units of Ns. If 𝜀→ 0 such that the force acts over an infinitesimally small period of time,
and f̂e = 1, the result is a unit impulse or the delta function. As shown in Appendix E, the delta
function 𝛿(t) is defined as

𝛿(t) = 0 for t ≠ 0 and
∫

∞

−∞
𝛿(t)dt = 1, (2.11)

If the delta function is applied at time t = 𝛼 as shown in Figure 2.4b, rather than at time t = 0,
the delta function is given by 𝛿(t − 𝛼). In practice it is not possible to apply a delta function because
any applied force will act over a finite time period, so an IRF cannot be measured directly, it must
be determined by manipulating measured data, and the way this is achieved is discussed in
Chapters 3 and 4.

To determine the displacement IRF for an underdamped SDOF system, it is first assumed that
before the impulse f̂e is applied to the mass at time t = 0, both the displacement and velocity of
the mass are zero. At the instant the force is applied x(0) = 0, and there is an initial velocity due to
the change in momentum of the mass so that f̂e = mẋ(0). The problem can thus be thought of as a
free vibration problem with initial conditions of x(0) = 0 and ẋ(0) = f̂e∕m. The equation of motion
for this system is Eq. (2.5a), which has the solution given by Eq. (2.9d). The initial conditions are
applied to determine the amplitude |A| and phase angle 𝜙. Considering the initial displacement
x(0) = 0 results in 0 = |A| sin𝜙. The nontrivial solution means that 𝜙 = 0, (the trivial solution
simply corresponds to the solution where the mass remains stationary and so is of no interest),
such that Eq. (2.9a) becomes

x(t) = |A|e−𝜁𝜔nt sin(𝜔dt). (2.12)

Differentiating Eq. (2.12) with respect to time gives

ẋ(t) = −𝜁𝜔n|A|e−𝜁𝜔nt sin(𝜔dt) + 𝜔d|A|e−𝜁𝜔nt cos(𝜔dt). (2.13)

Considering the initial velocity ẋ(0) = f̂e∕m, results in |A| = f̂e∕m𝜔d. So, the displacement
response of the system is given by

x(t) =
f̂e

m𝜔d
e−𝜁𝜔nt sin(𝜔dt) for t ≥ 0. (2.14)

Note, the causality constraint (t ≥ 0), which means that the expression is only valid once
the impulsive force has been applied. If f̂e is a unit impulse then x(t) is the response per unit
impulse, so that x(t) = h(t), where h(t) is the displacement IRF, then

h(t) = 1
m𝜔d

e−𝜁𝜔nt sin(𝜔dt) for t ≥ 0, (2.15a)

which has units of m/(Ns). To determine the velocity and acceleration IRFs, the constraint of
causality has to be applied mathematically. This can be done by using the Heaviside function, which
is zero for t< 0 and unity for t ≥ 0. Thus, Eq. (2.15a) can be written as

h(t) = u(t)h(t), (2.15b)

where h(t) = 1
m𝜔d

e−𝜁𝜔nt sin(𝜔dt) without the constraint of t ≥ 0 and u(t) is the Heaviside function.
Differentiating Eq. (2.15b) with respect to time gives

ḣ(t) = u̇(t)h(t) + u(t) ̇h(t), (2.16a)

Note that u̇(t) = 𝛿(t) and h(0) = 0, so that u̇(t)h(t) = 0, and Eq. (2.16a) becomes

ḣ(t) = u(t) ̇h(t), (2.16b)
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where ̇h(t) = 1
m𝜔d

e−𝜁𝜔nt(𝜔d cos(𝜔dt) − 𝜁𝜔n sin(𝜔dt)). Equation (2.16b) can be written as

ḣ(t) =
𝜔n

m𝜔d
e−𝜁𝜔nt cos(𝜔dt + 𝜃) for t ≥ 0, (2.16c)

where 𝜃 = tan−1(𝜁∕
√

1 − 𝜁2). To determine the acceleration IRF, Eq. (2.16b) is differentiated with
respect to time to give

ḧ(t) = u̇(t) ̇h(t) + u(t) ̈h(t). (2.17a)

Now, as previously mentioned u̇(t) = 𝛿(t) and ̇h(0) = 1∕m, so that u̇(t) ̇h(t) = 𝛿(t)∕m, and
Eq. (2.17a) becomes

ḧ(t) = 𝛿(t)
m

+ u(t) ̈h(t), (2.17b)

where ̈h(t) = −𝜔2
n

m𝜔d
e−𝜁𝜔nt((1 − 2𝜁2) sin(𝜔dt) + 2𝜁

√
1 − 𝜁2 cos(𝜔dt)). Equation (2.17b) can be

written as

ḧ(t) = 𝛿(t)
m

−
𝜔2

n

m𝜔d
e−𝜁𝜔nt sin(𝜔dt + 𝜙) for t ≥ 0, (2.17c)

where 𝜙 = sin−1(2𝜁
√

1 − 𝜁2). Note that in the derivation of the acceleration IRF, it is essential to
include the Heaviside function; if it had not been included, then the term 𝛿(t)/m would have been
omitted. This term is a scaled delta function and occurs mathematically because the delta function
is the derivative of the Heaviside function, i.e. 𝛿(t) = u̇(t). Physically, it occurs because an impulse
imparts finite momentum to the system resulting in an instantaneous change in velocity of the
mass, which means that its acceleration at t = 0 must be of the form of a delta function. Further
details concerning the acceleration IRF are given in Iwanaga et al. (2021).

Time-delayed displacement, velocity, and acceleration IRFs are plotted in Figure 2.5a–c respec-
tively. The IRFs are as result of a delta function being applied as the impulse on the mass at t = 𝛼.
This was done so that the initial parts of the IRFs can be clearly seen. Note that the y axis for the
accelerance IRF in Figure 2.5c is not continuous. It is shown this way because the initial response
is generally very large compared to the oscillatory part of the IRF.

MATLAB Example 2.1

In this example, the displacement IRF of a single degree-of-freedom system with four different
values of damping is plotted.

clear all

%% Parameters
m=1; % [kg]
k=10000; % [N/m]
wn=sqrt(k/m); % [rad/s]
z=0.01;
c=2*z*wn*m; % [Ns/m]
wd=sqrt(1-zˆ2)*wn; % [rad/s]

%% Time vector
dt=0.001; % [s]
T=100; % [s]
t=0:dt:T; % [s]

%% Impulse response
h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]

% mass
% stiffness
% undamped natural frequency
% damping ratio, 0.001, 0.01, 0.1, 1
% damping coefficent
% damped natural frequency

% time resolution in seconds
% duration of time signal
% time vector

% displacement IRF

(Continued)
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MATLAB Example 2.1 (Continued)

%% Plot results
plot(t,h);
grid;axis square
xlabel('Time (s)');
ylabel('Displacement (m)');

Results
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Comments

1. For different values of damping, the time axis must be set to the appropriate length.
2. When 𝜁 = 1, Eq. (2.15a) cannot be used to plot h(t), because 𝜔d = 0. In this case, 𝜁 can

be set to 0.9999 to plot h(t), or the approximation sin(𝜔dt)≈𝜔dt, so that for 𝜁 = 1, h(t) ≈
1
m

te−𝜔nt for t ≥ 0.
3. An exercise for the reader is to plot ḣ(t) and ḧ(t) for the four values of damping used

to plot h(t). Also, check the results for ḣ(t) and ḧ(t) by numerically differentiating h(t)
and ḣ(t). See Appendix A, which discusses how to carry out differentiation numerically
in MATLAB.
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Figure 2.5 Delayed IRFs for an SDOF system when a delta function force impulse is applied at time t = 𝛼.
(a) Displacement IRF. (b) Velocity IRF. (c) Acceleration IRF.

2.6 Determination of Damping from Free Vibration

It was shown in Eq. (2.9d) and Figure 2.3 that the free vibration response of an SDOF system is given
by an expression that consists of the product of an oscillatory part and an envelope. The envelope
(Env) is given by

Env = |A|e−𝜁𝜔nt. (2.18)

Taking the natural logarithms of both sides of Eq. (2.18) results in

ln(Env) = ln |A| − 𝜁𝜔nt, (2.19)

which is the equation for a straight line, where ln|A| is the intercept with the y axis and 𝜁𝜔n
is the modulus of the gradient (Grad). It is known that 𝜔d = 𝜔n

√
1 − 𝜁2 and 𝜔d = 2𝜋/Td

so that

Grad = 2𝜋𝜁

Td
√

1 − 𝜁2
, (2.20)

which can be rearranged to give

𝜁 = 1√
1 + 𝜒2

, (2.21)

where 𝜒 = 2𝜋/(TdGrad). To determine the envelope from the measured free vibration decay
of the SDOF system, the analytic signal is first determined. This is a complex signal in the
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time domain. Its real part is the original signal x(t), and the imaginary part x̂(t) is the orig-
inal signal, but phase shifted by −90∘. To obtain the analytic signal, the Hilbert transform
(Feldman, 2011) is used, a summary of which is given in Appendix B. The analytic signal is
given by

a(t) = x(t) + ĵx(t). (2.22)

The envelope is then simply given by |a(t)|.

MATLAB Example 2.2

In this example the damping is determined from the impulse response of an SDOF system,
which has a damping ratio of 𝜁 = 0.01.

clear all

%% Parameters
m=1; % [kg]
k=10000; % [N/m]
wn=sqrt(k/m); % [rad/s]
z=0.01;
c=2*z*wn*m; % [Ns/m]
wd=sqrt(1-zˆ2)*wn; % [rad/s]
Td=2*pi/wd; % [s]

%% Time vector
dt=0.001; % [s]
T=5; % [s]
t=0:dt:T; % [s]

%% Normalised displacement IRF
h=exp(-z*wn*t).*sin(wd*t);

%% Calculations
a=hilbert(h);
env=log(abs(a));
t1=t(500:3500);env1=env(500:3500);
p=polyfit(t1,env1,1);
grad=-p(1);
gamma=2*pi/(grad*Td);
Est_z=1/sqrt(1+gammaˆ2)

%% Plot results
figure(1);
plot(t,h);
hold on;
plot(t,abs(a),t,-abs(a),'linewidth',2)
grid;axis square
xlabel('time (s)');
ylabel('normalised displacement');

figure(2);
plot(t,env,'linewidth',2);
hold on
plot(t1,env1,'linewidth',10,'Color',[.7 .7 .7])
grid;axis square
xlabel('time (s)');
ylabel('ln(envelope)');

% mass
% stiffness
% undamped natural frequency
% damping ratio
% damping coefficient
% damped natural frequency
% damped natural period

% time resolution in seconds
% duration of time signal
% time vector

% normalized impulse response function

% create analytic signal
% calculate the log of the envelope
% set a specific time range
% fit straight line in time range t1
% calculate the gradient of the line
% calculate the constant
% damping ratio estimate

% normalized IRF

% envelope

(Continued)
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MATLAB Example 2.2 (Continued)

Results
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From the data, the damping ratio is estimated to be 0.0099. The relative error between the
actual and the estimated damping ratio is 1.1%.

Comments

1. It can be seen in the example that the envelope is not estimated correctly at the begin-
ning and the end of the time history. This is because the Hilbert transform is calculated
in MATLAB using a frequency domain approach, and there is a windowing effect (which is
discussed in Chapter 4) due to the truncation of data. There is also an effect due to the
non-causality of the Hilbert transform, which is evident at the end of the time history (this
effect is also discussed in Chapter 4).

2. Because the envelope is poorly estimated at the beginning and end of the time history, the
time period chosen for the estimation of the damping ratio must avoid these regions. In the
example this time period is between 0.5 and 3.5 seconds.

3. An exercise for the reader is to repeat the example, but for damping values of 𝜁 = 0.001
and 𝜁 = 0.1. Note that the time period used to estimate the damping ratio must be adjusted
in each case.

2.7 Harmonic Excitation

In Section 2.2, the IRF was derived for the SDOF mass-spring-damper system. This is the time
domain description of the system. There is a counterpart to this – the frequency response function
(FRF), which is the frequency domain description of the system. Before considering this, the
response to a harmonic force is first studied. In this case Eq. (2.4b) becomes

mẍ(t) + cẋ(t) + kx(t) = |F| sin(𝜔t), (2.23a)

where |F| is the amplitude of the excitation force acting on the mass, and 𝜔 is the angular
excitation frequency, which has units of rad/s. Note that 𝜔 = 2𝜋f , where f is the frequency in
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Figure 2.6 Response of an SDOF mass-spring-damper system to harmonic excitation.

cycles per second, or Hz. If the system is initially at rest and is then excited by the force |F| sin(𝜔t)
there are two components to the response. One is a transient response that decays with increasing
time according to the amount of damping in the system, and the second is a harmonic response
at the same frequency as the excitation force, but with a phase shift at each frequency due to the
time taken for the system to respond to the force. The actual displacement response is plotted in
Figure 2.6 together with the transient and the harmonic response. It is clear from Figure 2.6 that
after some time, once the transient response has decayed to a negligible level, then the actual
response is the same as the harmonic response, which is given by x(t) = |X| sin(𝜔t + 𝜙), where |X|
is the amplitude of the displacement. This is called the steady-state response and is a particularly
important quantity in vibration analysis. The displacement can be differentiated with respect
to time to give the velocity, ẋ(t) = 𝜔|X| cos(𝜔t + 𝜙), which in turn can be differentiated to give
the acceleration, ẍ(t) = −𝜔2|X| sin(𝜔t + 𝜙). The expressions for the displacement, velocity, and
acceleration can be substituted into Eq. (2.23a) to give

−𝜔2m|X| sin(𝜔t + 𝜙)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

inertia force

+ 𝜔c|X| cos(𝜔t + 𝜙)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

damping force

+ k|X| sin(𝜔t + 𝜙)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

stiffness force

= |F| sin(𝜔t)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

excitation force

. (2.23b)

This equation is represented graphically in terms of the force vectors in Figure 2.7. The amplitude
of the stiffness force is constant with frequency, the amplitude of the damping force is proportional
to frequency, and the amplitude of the inertia force is proportional to the square of frequency. The

Inertia force !2m X

Damping force !c X

Stiffness force k X

Excitation force F

�

Figure 2.7 Schematic diagram showing the amplitudes of the stiffness, damping, and inertia forces
compared to the excitation force, and the phase angles between them.
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phase angle between the damping and the stiffness force is 90∘, as is the phase angle between the
inertia force and the damping force. This is because the stiffness, damping, and inertia forces are
proportional to displacement, velocity, and acceleration, respectively, which each differ in phase by
90∘ as the motion is harmonic. The phase between the displacement response and the excitation
force 𝜙 is clearly shown in Figure 2.7. It should be noted that the amplitudes of the damping and
acceleration forces change with frequency, so the shape of the force diagram is a function of fre-
quency, resulting in a different phase shift𝜙 at each frequency. If the system is undamped, however,
the damping force is zero. Because the stiffness and inertia forces oppose each other, the response
will therefore be in-phase (0∘) with the excitation force if the stiffness force is greater than the iner-
tia force, and will be in anti-phase (−180∘) if the inertia force is greater than the stiffness force. This
is further discussed in Section 2.8.

For a given harmonic excitation force of amplitude |F| at frequency 𝜔, the object is to determine
the steady-state amplitude of the displacement response |X| and its phase with respect to the force
𝜙. To achieve this, Eq. (2.23b) needs to be solved. However, to do this requires splitting the equation
into two parts, which can be solved to give |X| and 𝜙. It is preferable to use complex numbers
by noting that |F| sin(𝜔t) = |F|(ej𝜔t − e−j𝜔t)∕j2, which means that Eq. (2.23b) can be split into two
equations, one of which has an excitation force |F|ej𝜔t and the other |F|e−j𝜔t. These two equations
can be summed and then divided by j2 to give the original equation. The displacement response
can also be written in complex form. In response to the excitation force |F|ej𝜔t, it is |X|ej(𝜔t+𝜙) or
Xej𝜔t, where X = |X|ej𝜙, which is called the complex amplitude. Note that it is written in upper-case
italics to differentiate from time domain quantities, which are written in lower-case italics. For
convenience, the excitation force can be written as F = |F|ej𝜃 , in which 𝜃 = 0 in the case considered
here. The complex displacement amplitude and excitation forces are sometimes written as X(j𝜔)
and F(j𝜔) to emphasise that they are complex quantities and are a function of frequency. In general,
they contain both amplitude and phase information.

Consider Eq. (2.23a), but with a complex excitation force (note that this is a mathematical not a
physical quantity, but it serves the purpose of simplifying the analysis), so that

mẍ(t) + cẋ(t) + kx(t) = Fej𝜔t. (2.24)

The steady-state displacement response x(t) = Xej𝜔t is assumed, which means that the response
is at the same frequency as the excitation force, but with a phase difference. This is differentiated to
give the velocity ẋ(t) = j𝜔Xej𝜔t, which in turn is differentiated to give ẍ(t) = −𝜔2Xej𝜔t. Substituting
for the displacement, velocity, and acceleration in Eq. (2.24) results in

⎛
⎜
⎜
⎜
⎜⎝

− 𝜔2mX
⏟⏞⏟⏞⏟

Fm

+ j𝜔cX
⏟⏟⏟

Fc

+ kX
⏟⏟⏟

Fk

⎞
⎟
⎟
⎟
⎟⎠

ej𝜔t = Fej𝜔t, (2.25)

where Fm, Fc, and Fk are the complex inertia, damping, and stiffness forces, respectively. A repre-
sentation of the system in the steady state is shown in Figure 2.8a (compare this with Figure 2.2b),
and the relationship between the forces for three different frequencies is shown in Figure 2.8b. Note
that the ej𝜔t time dependence has been omitted for clarity in the figure. It is instructive to further
examine the forces as frequency increases. First consider zero frequency 𝜔 = 0, sometimes called
DC (from electrical system theory – direct current). In this case both the inertia and the damping
forces are zero, so the stiffness force is equal to the excitation force, i.e. kX = F, which means that
the displacement is given by X = F∕k.
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Figure 2.8 Frequency domain representation of an SDOF mass-spring-damper system. (a) Frequency
domain representation. (b) Relationship between the forces at different frequencies. Note that 𝜙 is negative
in each case, i.e. the displacement lags the force by 𝜙 radians.

As frequency increases, the magnitude of the inertia force increases. When the excitation fre-
quency is equal to the natural frequency, i.e. when 𝜔 = 𝜔n =

√
k∕m, which is called the resonance

frequency, then the amplitude of the inertia force is equal to the amplitude of the stiffness force.
However, because these forces are in anti-phase they sum to zero, which means that the damping
force is equal to the excitation force. For this to occur, the damping force must be in-phase with
the excitation force, so that j𝜔ncX = F, which means that the displacement is given by X = F∕j𝜔nc.
Thus, the displacement lags the excitation force by 90∘, which in turn means that the velocity is in
phase with the excitation force. Because the inertia and stiffness have effectively disappeared from
the point of view of the excitation force, the source only ‘sees’ a damper at this frequency. Above
the resonance frequency, as the excitation frequency increases, the inertia force also increases.
When 𝜔≫𝜔n the inertia force is much greater than the damping and the stiffness forces so that
−𝜔2mX ≈ F; therefore, X ≈ F∕(−𝜔2m). This means that the displacement is in anti-phase with the
excitation force, or the acceleration is in-phase with the excitation force. This is because both the
damping and stiffness have a negligible effect on the motion of the mass, so from the point of view
of the excitation force, it only ‘sees’ a mass at high frequencies.

2.8 Frequency Response Function (FRF)

The FRF describes the way in which the system responds in the steady-state at each excitation
frequency. It is the most fundamental and widely used quantity in vibration engineering (Ewins,
2000), and has a particular relationship with IRF, which is discussed further in Chapter 3. The FRF
is a complex quantity, having both an amplitude and a phase, which in general, are frequency
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dependent. The displacement FRF can be easily determined from Eq. (2.25), by dividing both sides
by ej𝜔t and rearranging to give

H(j𝜔) =
X(j𝜔)
F(j𝜔)

= 1
k − 𝜔2m + j𝜔c

. (2.26)

Note that the argument is shown to emphasise complex frequency domain quantities. The FRF
shown in Eq. (2.26) is called receptance and is related to displacement. It has units of m/N. There is
also an FRF related to velocity, which is given by Hvel(j𝜔) = j𝜔H(j𝜔), and is called mobility, so that

Hvel(j𝜔) = j𝜔
X(j𝜔)
F(j𝜔)

=
j𝜔

k − 𝜔2m + j𝜔c
, (2.27)

which has units of m/Ns. There is an FRF related to acceleration, which is given by
Hacc(j𝜔) = j𝜔Hvel(j𝜔) = −𝜔2H(j𝜔), and is called accelerance, so that

Hacc(j𝜔) = −𝜔2 X(j𝜔)
F(j𝜔)

= −𝜔2

k − 𝜔2m + j𝜔c
, (2.28)

which has units of m/Ns2. The receptance can be written as H(j𝜔) = |H(j𝜔)|ej𝜙(j𝜔) where |H(j𝜔)| =
1∕

√
(k − 𝜔2m)2 + (𝜔c)2 is the modulus, and𝜙(j𝜔)= tan−1(−𝜔c/(k−𝜔2m)) is the phase. The modu-

lus and phase of the receptance are plotted in Figure 2.9 for three values of damping ratio, 𝜁 = 0.001,
0.01, and 0.1. There are several features about the receptance that should be noted:

1. The modulus is plotted on log–log axes. This is done because, in general, the modulus has a
large range of values (large dynamic range), and details of both the small and large values can
be clearly seen over a wide frequency range. Moreover, the high-frequency response becomes
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Figure 2.9 Modulus and phase of the receptance of an SDOF mass-spring-damper system.
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a straight line rather than a curved line. Instead of plotting the modulus on a log axis it is fre-
quently plotted in dB. The way in which this is done is discussed in Appendix C.

2. It can be seen that the damping only has an effect on the receptance at frequencies
close to the resonance frequency. Indeed, at the resonance frequency Eq. (2.26) becomes
|H(j𝜔)|𝜔=𝜔n

= 1∕𝜔nc. At low frequencies the stiffness is the controlling factor, which can be
seen from Eq. (2.26) which reduces to |H(j𝜔)|𝜔≪𝜔n

≈ 1∕k. In a similar way, it can be seen that
at high frequencies the mass is the controlling parameter as |H(j𝜔)|𝜔≫𝜔n

≈ 1∕𝜔2m.
3. The phase is plotted as a linear quantity. However, so that it can be compared with the behaviour

of the modulus, which is plotted on a log frequency axis, it is plotted on log-linear axes. It can
be seen that the main effect of the damping is to control the rate of change of phase close to
the resonance frequency; the larger the damping, the greater the rate of change of phase. In the
undamped case, the phase is 0∘ below the resonance frequency and −180∘ above the resonance
frequency. At the resonance frequency the phase is −90∘ for all values of 𝜁 .

To show the different frequency regimes, and the low- and high-frequency asymptotes, the mod-
ulus of the receptance is plotted in Figure 2.10. The three frequency regimes in which the stiffness,
damping, and mass control the dynamic behaviour are evident.

The FRFs in Eqs. (2.26–2.28) are complex quantities. Accordingly, they can be written in terms of
their real and imaginary components. As an example, consider the receptance given in Eq. (2.26).
The numerator and denominator are each multiplied by the complex conjugate of the denominator,
to give

H(j𝜔) = 1
k − 𝜔2m + j𝜔c

×
k − 𝜔2m − j𝜔c
k − 𝜔2m − j𝜔c

(2.29a)

which simplifies to

H(j𝜔) = Re{H(j𝜔)} + jIm{H(j𝜔)} (2.29b)
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Figure 2.10 Modulus of the receptance of an SDOF mass-spring-damper system showing the parameters
that control the response in various frequency regions.
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Figure 2.11 Complex representation of the receptance for an SDOF mass-spring-damper system.

where Re{H(j𝜔)} = k−𝜔2m
(k−𝜔2m)2 + (𝜔c)2

and Im{H(j𝜔)} = −𝜔c
(k−𝜔2m)2 + (𝜔c)2

. Note that the denominators of
the real and the imaginary parts are the same and are positive. Thus, the signs of the numerators of
the real and imaginary parts govern whether they are positive or negative. The real part is positive
when k>𝜔2m, i.e. when𝜔<𝜔n, it is zero when𝜔=𝜔n, and is negative when𝜔>𝜔n. The imaginary
part is negative for all frequencies, which is a consequence of energy dissipation in the system (the
damping coefficient is positive). To illustrate the behaviour, the real and imaginary parts are plotted
as a function of frequency in Figure 2.11, together with a 3-dimensional plot, which captures the
complete behaviour of the FRF. Also plotted is the Nyquist or Argand diagram, which is a plot
of the imaginary part against the real part. The relationship between the modulus and phase and
the Nyquist diagram is clearly marked. Note that the phase angles of −45∘, −90∘, and −135∘ are
marked, as is the arrow indicating an increase in frequency.

The choice of which FRF plot to use, is made according to the purpose and preference of the
analyst. For example, if the energy dissipation characteristics of the system are of interest, then
the imaginary part is appropriate. If the frequency range needs to be determined where mass or
stiffness is the controlling parameter, then the sign of the real part should be consulted. If damping
estimation is of interest, then a variety of plots may be useful, and this is discussed in the next
sub-section.



�

� �

�

26 2 Fundamentals of Vibration

MATLAB Example 2.3

In this example the receptance FRF of an SDOF system is plotted, which has a damping ratio
of 𝜁 = 0.01.

clear all

%% parameters
m=1; % [kg]
k=10000; % [N/m]
wn=sqrt(k/m); % [rad/s]
z=0.01;
c=2*z*wn*m; % [Ns/m]

%% Frequency vector
df=0.001; % [Hz]
F=100; % [Hz]
f=0:df:F; % [Hz]
w=2*pi*f; % [rad/s]

%% Receptance FRF
H=1./(k-w.ˆ2+j*w*c); % [m/N]

%% Plot results
figure (1)
semilogx(f,20*log10(abs(H)),'linewidth',6)
hold on
semilogx(f,20*log10(1./w.ˆ2),'-')
hold on
semilogx(f,20*log10(f./f*1/k),':')
hold on
semilogx(wn/(2*pi),20*log10(1/(wn*c)),'xk')
grid;axis square
xlabel('frequency (Hz)');
ylabel('|receptance| (dB ref 1 m/N)');

figure (2)
semilogx(f,180/pi*angle(H))
grid;axis square
xlabel('frequency (Hz)');
ylabel('phase angle (degrees)');

figure (3)
plot(f,real(H))
grid;axis square
xlabel('frequency (Hz)');
ylabel('real(receptance) (m/N)');

figure (4)
plot(f,imag(H))
grid;axis square
xlabel('frequency (Hz)');
ylabel('imag(receptance) (m/N)');

figure (5)
plot(real(H),imag(H),'linewidth',4)
grid;axis square
xlabel('real (receptance) (m/N)');
ylabel('imag(receptance) (m/N)');

% mass
% stiffness
% undamped natural frequency
% damping ratio
% damping coefficient

% frequency resolution in Hz
% maximum frequency
% frequency vector

% receptance FRF

% modulus

% phase

% real part

% imaginary part

% Nyquist

(Continued)
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MATLAB Example 2.3 (Continued)

Results
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Comments

1. An exercise for the reader is to repeat the example, but for damping values of 𝜁 = 0.001
and 𝜁 = 0.1. Note that the amplitude range will need to be adjusted in each case.

2. An exercise for the reader is to repeat the example, but for mobility and acceleration FRFs.
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2.9 Other Features of the Receptance FRF

Apart from the general features of the FRF described in the previous section there are two other
factors concerning the damping-controlled frequency range that are worthy of discussion. One of
these is the frequency at which the maximum response occurs, and the other is the influence of
damping on the FRF at frequencies close to the resonance frequency. To investigate these, it is
useful to write Eq. (2.26) as

H(j𝜔) = 1
k
× 1

1 − Ω2 + j2𝜁Ω
, (2.30)

where Ω = 𝜔/𝜔n. The modulus of Eq. (2.30) can be written as

|H(j𝜔)| = 1
k
× ((1 − Ω2)2 + (2𝜁Ω)2)−

1
2 . (2.31)

The maximum of the FRF modulus occurs when the derivative of Eq. (2.31) with respect to fre-
quency is equal to zero, i.e. when

−1
2
((1 − Ω2)2 + (2𝜁Ω)2)−

3
2 × d

dΩ
((1 − Ω2)2 + (2𝜁Ω)2) = 0, (2.32)

which results in −4Ω(1−Ω2)+ 8𝜁2Ω = 0, so that

−4Ω(1 − Ω2 − 2𝜁2) = 0. (2.33)

The positive solution to Eq. (2.33) results in the frequency at which the peak of the FRF modulus
occurs, and is given by

Ωpeak =
√

1 − 2𝜁2 or 𝜔peak = 𝜔n

√
1 − 2𝜁2. (2.34)

Note that if the damping is light, such that 𝜁 < 0.1 then 𝜔peak ≈𝜔n. For the mobility FRF,
𝜔peak = 𝜔n, and for the accelerance FRF (for light damping), 𝜔peak = 𝜔n

√
1 + 2𝜁2. It is left as an

exercise for the reader to verify these relationships.
To investigate the effect of damping on the FRF modulus in the damping-controlled frequency

range, consider the displacement FRF shown in Figure 2.12. Note that this is plotted in the fre-
quency range close to the resonance frequency, the modulus is plotted in dB, and the frequency
axis is linear rather than log. The half power points shown on the modulus plot are 3 dB below the
maximum and occur at frequencies 𝜔1 and 𝜔2. The phase angles at these frequencies are approxi-
mately −45∘ and −135∘, respectively. The maximum value of the modulus is |H(j𝜔)|max = 1/2𝜁k , so
the value of the modulus at the half-power points is 1∕2

√
2𝜁k (because −3 dB ≈ 20log10(1∕

√
2)).

Therefore, the frequencies at the half-power points can be determined by setting Eq. (2.31) to this
value, so that

1
k((1 − Ω2)2 + (2𝜁Ω)2)

1
2

= 1
2
√

2𝜁k
. (2.35)

Squaring both sides of Eq. (2.35) and rearranging gives

Ω4 − 2(1 − 2𝜁2)Ω2 + (1 − 8𝜁2) = 0, (2.36)

which can be solved to give

Ω2
1,2 = 1 − 2𝜁2 ± 2𝜁

√
1 + 𝜁2. (2.37a,b)

Neglecting terms with 𝜁2 results in Ω2
1 = 1 − 2𝜁 and Ω2

2 = 1 + 2𝜁 , which can be combined to give

Ω2
2 − Ω2

1 = (Ω2 + Ω1)(Ω2 − Ω1) = 4𝜁. (2.38)



�

� �

�

2.10 Determination of Damping from an FRF 29

!1 !2
ù !n

!

maxH ( j!)
H ( j!)

� ( j!)

3 dB

0

0

–45°

–90°

–135°

–180°

Half power points

2�k
1

Figure 2.12 Amplitude and phase of the displacement FRF at frequencies close to the resonance
frequency.

Because damping is assumed to be light, then both Ω1 and Ω2 are close to unity so that
Ω2 +Ω1 ≈ 2. Therefore Ω2 −Ω1 = 2𝜁 , or

𝜁 =
𝜔2 − 𝜔1

2𝜔n
, (2.39)

which relates the damping ratio to the half-power point frequencies, and the undamped natural
frequency. Equation (2.39) can be used to determine the damping from experimental data, which
is discussed in the next section.

2.10 Determination of Damping from an FRF

The damping ratio can be calculated from an FRF by simply plotting either the amplitude or the
phase and determining the three frequency points given in Eq. (2.39). If the damping is very light,
special care must be taken to obtain an accurate estimate. In this case, the difference between 𝜔1
and 𝜔2, which correspond to phase angles −45∘ and −135∘, respectively, is very small. In practice,
the FRF is in discrete form, as in MATLAB Example 2.3, so to obtain a good estimate of damping,
a fine frequency resolution is required, so that there are enough points within this frequency
range. To illustrate this problem, two cases are shown in Figure 2.13. The modulus, phase, and
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Figure 2.13 Example of the displacement FRF used for damping estimation, showing cases when the
frequency resolution is good and when it is poor.

Nyquist plot are depicted in each case. The thick grey line is the actual FRF, and the small circles
are data points, from a measurement, for example. On the left is the case where the frequency
resolution is adequate for the amount of damping in the system, and on the right is the case is
where the frequency resolution is poor, which would lead to a very poor estimate of damping. It is
clear that in the case on the left there are many data points between the half-power points, and
this is evident in the modulus, phase, and Nyquist plots. However, in the case on the right, there
are only two points within this frequency range. This is most clear in the Nyquist plot, which
illustrates the value of examining the FRF in this way. Note that, when the frequency resolution
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is poor, if the measured points are connected with distinct straight lines, then the result is a
discontinuous rather than a smooth curve.

To determine the damping using the half-power points from an FRF the following procedure is
advised.

1. Examine the Nyquist plot to see if the frequency resolution is adequate. If it is, the Nyquist plot
will be smooth, but if it is not the Nyquist plot will have jagged edges as in Figure 2.13. If the
Nyquist plot is not smooth then greater frequency resolution is required from the measured
data. The way this is achieved is discussed in several of the later chapters. Note that for a lightly
damped system, very fine frequency resolution is required to obtain an accurate estimate of
damping, and this is illustrated in MATLAB Example 2.4.

2. Determine the half power point frequencies and the resonance frequency. This can be done by
examining the modulus, but it can be easier to use the phase plot, by determining the frequencies
at which the phase is −45∘, −90∘, and −135∘. Once these frequencies have been determined
Eq. (2.39) can be used to estimate the damping ratio. Note that there are alternative ways to
determine damping using the Nyquist plot, as discussed by Ewins (2000).

MATLAB Example 2.4

In this example the damping is estimated from the FRF of an SDOF system, which has a damp-
ing ratio of 𝜁 = 0.01, using the half-power point method.

clear all

%% parameters
m=1; % [kg]
k=10000; % [N/m]
wn=sqrt(k/m); % [rad/s]
z=0.01;
c=2*z*wn*m; % [Ns/m]

%% Frequency vector
df=0.05; % [Hz]
F=17; % [Hz]
f=0:df:F; % [Hz]
w=2*pi*f; % [rad/s]

%% Receptance FRF
H = 1./(k-w.ˆ2+j*w*c); % [N/m]

%% Plot results
figure (1)
plot(f,20*log10(abs(H)),'o')
grid;axis square
xlabel('frequency (Hz)');
ylabel('|receptance| (dB ref 1 m/N)');

figure (2)
plot(f,180/pi*angle(H),'o')
grid;axis square
xlabel('frequency (Hz)');
ylabel('phase angle (degrees)');

figure (3)
plot(real(H),imag(H),'o')
grid;axis square
xlabel('real (receptance) (m/N)');
ylabel('imag(receptance) (m/N)');

% mass
% stiffness
% natural frequency
% damping ratio
% damping coefficient

% frequency resolution in Hz
% maximum frequency
% frequency vector

% receptance FRF

% modulus

% phase

% Nyquist

(Continued)
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MATLAB Example 2.4 (Continued)

Results
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Estimated damping ratio is 0.011, giving a relative error of 10%.

Comments

1. Note the error in the estimate is quite large. The frequency resolution is 0.05 Hz, which is
quite a fine frequency resolution. This shows the difficulty in obtaining an accurate damping
estimate if the damping is light.

2. An exercise for the reader is to repeat the calculation but use a smaller frequency increment
and determine the accuracy of the estimate.

3. An exercise for the reader is to repeat the example, but for damping values of 𝜁 = 0.001
and 𝜁 = 0.1. Note that the amplitude range will need to be adjusted in each case. Compare
your results with the damping values estimated using the time domain method in MATLAB
Example 2.2.
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2.11 Reciprocal FRF

Rather than plot the FRFs of receptance, mobility, and accelerance, sometimes it is preferable to plot
the reciprocals of these quantities, which are dynamic stiffness, impedance, and apparent mass,
respectively. This can be advantageous if elements are connected in parallel such as the SDOF
mass-spring damper system shown in Figure 2.8a. The dynamic stiffnesses of these elements are,
respectively, given by

Km(j𝜔) =

mass

Fm(j𝜔)

X(j𝜔)
= −𝜔2m, (2.40a)

Kk(j𝜔) =

stiffness

Fk(j𝜔)

X(j𝜔)
= k, (2.40b)

Kc(j𝜔) =

damping

Fc(j𝜔)

X(j𝜔)
= j𝜔c. (2.40c)

These sum to give

K(j𝜔) =
F(j𝜔)
X(j𝜔)

= k − 𝜔2m + j𝜔c, (2.41)

which is the reciprocal of H(j𝜔) given in Eq. (2.26). Note that the impedance and apparent mass
can be determined by dividing Eq. (2.41) by j𝜔 and −𝜔2 , respectively. Further, it can be seen that
the dynamic stiffness has the desirable property that the reactive properties of the system, which
store energy, are contained solely in the real part, and the damping properties are contained solely
in the imaginary part. If the real part is plotted as a function of the square of frequency and the
imaginary part is plotted as a function of frequency, then the graphs are straight lines, and simple
curve fitting procedures can be used to estimate the system properties. The real and imaginary parts
of the SDOF system are plotted in Figure 2.14 to illustrate plots of the dynamic stiffness.

k

Gradient of –m 

Gradient of c

Re{K( j!)}

!2
n !2

!

Im{K( j!)}

Figure 2.14 Dynamic stiffness of an SDOF system. The real part is plotted as a function of the square of
frequency, and the imaginary part is plotted as a function of frequency.
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MATLAB Example 2.5

In this example the mass stiffness and damping properties are estimated from the dynamic
stiffness FRF of an SDOF system, which has a damping ratio of 𝜁 = 0.01.

clear all

%% Parameters
m=1; % [kg]
k=10000; % [N/m]
z=0.01;
c=2*z*sqrt(m*k); % [Ns/m]

%% Frequency vector
df=1; % [Hz]
F=20; % [Hz]
f=0:df:F; % [Hz]
w=2*pi*f; % [rad/s]

%% Dynamic stiffness FRF
K = k-w.ˆ2+j*w*c; % [N/m]

%% Calculations
ff=f.ˆ2;
p = polyfit(ff,real(K),1);
stiffness=p(2);
mass=-p(1)/(2*pi)ˆ2;

q = polyfit(f,imag(K),1);
damping=q(1)/(2*pi)/(2*sqrt(mass*stiffness));

%% Plot results
figure (1)
plot(ff,real(K),'o')
grid;axis square
xlabel('frequencyˆ2 (Hzˆ2)');
ylabel('real(dynamic stiffness) (N/m)');

figure (2)
plot(f,imag(K),'o')
grid;axis square
xlabel('frequency (Hz)');
ylabel('imag(dynamic stiffness) (N/m)');

% mass
% stiffness
% damping ratio = 0.01
% damping coefficient

% frequency resolution in Hz
% maximum frequency
% frequency vector

% receptance FRF

% square of frequency
% least square fit
% estimate of stiffness
% estimate of mass

% least square fit
% estimate of damping

% real part vs frequency2

% imaginary part vs frequency

Results
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The mass, stiffness, and damping ratio are estimated exactly.

(Continued)
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MATLAB Example 2.5 (Continued)

Comments

1. Note that this method can be used to estimate all the properties with relative ease by
fitting straight lines to measured data. However, the method relies on good low-frequency
measurements, which may not be possible in some cases using accelerometers, so laser
displacement sensors may need to be used.

2. An exercise for the reader is to repeat the example, but for damping values of 𝜁 = 0.001 and
𝜁 = 0.1. Compare your results with the damping values estimated using the time domain
method in MATLAB Examples 2.2 and 2.4.

3. The method can be modified to estimate the parameters using acceleration data to form
the apparent mass, or using velocity data to form impedance. This is left as an exercise for
the reader.

2.12 Summary

This chapter has introduced the fundamental idealised components of a vibrating system, namely
mass, stiffness, and damping. These are connected is parallel to form an SDOF, which has been
studied in detail. Time and frequency domain descriptors, namely the impulse and frequency
response functions (IRFs and FRFs), have been introduced and derived for the SDOF system.
These are given in Table 2.1.

Table 2.1 Relationships between IRFs and FRFs for an SDOF system.

IRF, (t ≥0) FRF

h(t) = 1
m𝜔d

e−𝜁𝜔nt sin(𝜔dt) m
Ns

Receptance, H(j𝜔) 1
k − 𝜔2m + j𝜔c

m
N

ḣ(t) =
𝜔n

m𝜔d
e−𝜁𝜔nt cos(𝜔dt + 𝜃) m

Ns2 Mobility, Hvel(j𝜔)
j𝜔

k − 𝜔2m + j𝜔c
m
Ns

ḧ(t) = 𝛿(t)
m

−
𝜔2

n

m𝜔d
e−𝜁𝜔nt sin(𝜔dt + 𝜙) m

Ns3 Accelerance, Hacc(j𝜔) −𝜔2

k − 𝜔2m + j𝜔c
m

Ns2

where,

Undamped natural frequency 𝜔n =
√

k
m

Viscous damping ratio 𝜁 = c

2
√

km
= c

2m𝜔n

Damped natural frequency 𝜔d = 𝜔n

√
1 − 𝜁2

𝜃 = tan−1

(
𝜁√

1 − 𝜁2

)

𝜙 = tan−1

(
2𝜁

√
1 − 𝜁2

1 − 2𝜁2

)



�

� �

�

36 2 Fundamentals of Vibration

m

k c

m

Ns

log H ( j!) �( j!)

log f (Hz)

log f (Hz)

(°)

t(s)

h(t)

fe(t)

x(t)

m

N

Figure 2.15 Displacement IRF and FRF for an SDOF mass-spring-damper system.

The IRF and FRF are fundamental quantities that are important for all dynamical systems and a
thorough understanding of these for an SDOF system is essential prior to studying more complex
systems and interpreting experimental data. The displacement IRF and FRF are summarised in
Figure 2.15.

For a lightly damped SDOF system, the damping can be estimated in the time domain by

𝜁 ≈ Grad
𝜔n

where 𝜔n is the undamped natural frequency given in Table 2.1, and Grad is the modulus of the
slope of the natural log of the envelope of the decay of free vibration. If the damping is light, it can
also be determined in the frequency domain from the resonance frequency 𝜔n and the half power
point frequencies 𝜔1 and 𝜔2 by

𝜁 =
𝜔2 − 𝜔1

2𝜔n

in which the phase angles at 𝜔1, 𝜔n, and 𝜔2 are −45∘, −90∘, and −135∘, respectively. The defi-
nition of the FRFs and their reciprocals is given in Table 2.2. Note that if the model or set of
measurements involves several force and response positions, such that there is a matrix of FRFs,
then reciprocal FRFs are calculated by inverting the matrix rather than by simply inverting an
individual FRF.

Table 2.2 Definitions of the FRFs and their reciprocals.

Receptance H(j𝜔) =
X(j𝜔)
F(j𝜔)

Dynamic stiffness K(j𝜔) = 1
H(j𝜔)

=
F(j𝜔)
X(j𝜔)

Mobility Hvel(j𝜔) = j𝜔H(j𝜔) Impedance Z(j𝜔) = 1
Hvel(j𝜔)

Accelerance Hacc(j𝜔) = −𝜔2H(j𝜔) Apparent mass M(j𝜔) = 1
Hacc(j𝜔)
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3

Fourier Analysis

3.1 Introduction

In Chapter 2, it was shown that the way in which a vibrating system is generally characterised, is
either by its impulse response function (IRF) in the time domain, or by its frequency response func-
tion (FRF) in the frequency domain. Most analysis is conducted in the frequency domain because
it is much easier to determine system properties such as natural frequencies and damping, and to
relate the system behaviour to its physical properties such as mass, stiffness, and damping. How-
ever, data captured during vibration measurements are in the time domain, and many numerical
simulations often involve time domain operations. The data can be displacement, velocity, or accel-
eration depending upon the specific situation and the sensor used, or the quantity of interest. Thus,
it is important to be able to transform time domain data to frequency domain data (and vice versa).
The way in which this is achieved is by using either the Fourier series (FS) or the Fourier transform
(FT), which is named after Jean-Baptiste Joseph Fourier, who developed the techniques in the early
part of the nineteenth century (Fourier, 1822). The Fourier transform is arguably the most impor-
tant mathematical operation in the field of vibration engineering, and as such it is imperative for
the vibration engineer to be thoroughly acquainted with Fourier analysis. Nowadays, most data
are sampled (or digitised) before being processed, so the Fourier transform that operates on such
data – the so-called discrete Fourier transform (DFT) – is of particular interest. In this chapter,
this transform and its inverse are derived, and their key features are discussed. The derivations
are compact, and include various assumptions that are not necessarily stated explicitly. For further
detailed information the reader can consult (Shin and Hammond, 2008), and there are other more
general textbooks on the subject, which may be of help to the reader such as Papoulis (1962, 1977),
Oppenheim and Schafer (1975), Oppenheim et al. (1997), and Bendat and Piersol (1980, 2000).

3.2 The Fourier Transform (FT)

As mentioned above, signals are generally transformed from the time domain to the frequency
domain using the FT, which is sometimes called the Fourier integral. The starting point for the
derivation of this transform is the FS, as engineering students are familiar with this from their
undergraduate studies. The FS is used to describe a periodic signal, such as that shown in Figure 3.1.
The signal has a fundamental period of Tp seconds. It can be decomposed into a DC signal and
the sum of harmonics of the fundamental frequency 𝜔1 = 2𝜋/Tp as shown in the right part of

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations

http://www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
Pavilion
#custom
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Figure 3.1 A periodic displacement time history and its Fourier components.

Figure 3.1. Each harmonic is defined by an amplitude and phase with respect to the fundamental
component. In principle, the sum can involve an infinite number of harmonics, but a finite sum of a
few harmonics may give a good approximation to many signals. This is because the components of
a signal tend to have smaller amplitudes at higher frequencies, especially for signals corresponding
to displacements. A periodic displacement time history can be written as

x(t) =
x0

2
+

∞∑
n=1

xn(t), (3.1)

where xn(t) = |X|n cos(𝜔nt + 𝜙n), in which |X|n and𝜙n are the amplitude and phase of the n-th har-
monic at frequency𝜔n, respectively, where𝜔n = n𝜔1, n = 1, 2…. Thus, provided that the amplitude
and phase of each harmonic are known then x(t) can be written as a Fourier series. To determine
the unknown quantities, it is preferable to write down Eq. (3.1) as

x(t) =
a0

2
+

∞∑
n=1

[an cos(𝜔nt) + bn sin(𝜔nt)], (3.2)

in which the amplitude |X|n =
√

a2
n + b2

n and the phase 𝜙n = tan−1(−bn/an). The coefficients in
Eq. (3.2) are given by

a0

2
= 1

Tp ∫

Tp

0
x(t)dt, (3.3a)

which is the mean or DC value,

an = 2
Tp ∫

Tp

0
x(t) cos(𝜔nt)dt n = 1,2,… , (3.3b)
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Figure 3.2 Basis functions for the complex Fourier series: two contra rotating vectors, |X̃|nej(𝜔nt+𝜙n) and
|X̃|ne−j(𝜔nt+𝜙n).

and

bn = 2
Tp ∫

Tp

0
x(t) sin(𝜔nt)dt n = 1,2,… , (3.3c)

are the harmonic components.
The next stage in the derivation of the Fourier transform is to express the Fourier series in

terms of complex exponential functions, i.e. phasors or vectors that rotate in the clockwise
and anti-clockwise directions as shown in Figure 3.2. Two contra-rotating vectors are shown;
|X̃|nej(𝜔nt+𝜙n), which corresponds to a vector with amplitude |X̃|n and phase 𝜙n rotating with an
angular velocity of 𝜔n in the anti-clockwise direction, and |X̃|ne−j(𝜔nt+𝜙n), rotating in the clockwise
direction. Note that X̃n = Xn∕2 and that these vectors can be written as X̃nej𝜔nt and X̃∗

ne−j𝜔nt,
where * denotes the complex conjugate, because X̃n = |X̃|nej𝜙n and X̃∗

n = |X̃|ne−j𝜙n . As can be
seen in Figure 3.2, the cosine function is related to the projection of the rotating vector onto the
real axis because cos(𝜔nt) = Re

{
ej𝜔nt}, and the sine function is related to the projection of the

rotating vector onto the imaginary axis because sin(𝜔nt) = Im
{

ej𝜔nt}. Alternatively, sine and
cosine functions can be written as a combination of the rotating vectors using Euler’s formula
e±j𝜃 = cos 𝜃 ± j sin 𝜃, so that

cos(𝜔nt) = ej𝜔nt + e−j𝜔nt

2
(3.4a)

and

sin(𝜔nt) = ej𝜔nt − e−j𝜔nt

j2
. (3.4b)

Equations (3.4a) and (3.4b) can be substituted into Eq. (3.2) to give

x(t) =
a0

2
+

∞∑
n=1

[an

2
(

ej𝜔nt + e−j𝜔nt) + bn

j2
(

ej𝜔nt − e−j𝜔nt)
]
, (3.5)

which can be rearranged to give

x(t) =
a0

2
+

∞∑
n=1

an − jbn

2
ej𝜔nt +

∞∑
n=1

an + jbn

2
e−j𝜔nt. (3.6)
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Letting Xn = an − jbn, so that X
∗
n = an + jbn and noting that X̃n = Xn∕2 results in

x(t) = X̃0 +
∞∑

n=1
X̃nej𝜔nt +

∞∑
n=1

X̃∗
ne−j𝜔nt. (3.7)

Note that this is simply the sum of a DC term and an infinite sum of contra-rotating vectors.
Because X̃n = |X̃|nej𝜙n , each vector has an amplitude |X̃|n and phase 𝜙n and rotates at angular
velocity 𝜔n. Thus, the basis functions for the complex Fourier series are rotating vectors rather
than the sine and cosine functions used in the real Fourier series. Noting that X̃n = (an − jbn)∕2,
and X̃∗

n = (an + jbn)∕2, Eqs. (3.3a, 3.3b, 3.3c) can be combined to give

X̃0 = 1
Tp ∫

Tp

0
x(t)dt, (3.8a)

X̃n = 1
Tp ∫

Tp

0
x(t)e−j𝜔ntdt, (3.8b)

X̃∗
n = 1

Tp ∫

Tp

0
x(t)ej𝜔ntdt. (3.8c)

Thus, X̃∗
n = X̃−n, so that

∑∞
n=1 X̃∗

ne−j𝜔nt can be written as
∑−1

n=−∞ X̃nej𝜔nt, which means that
Eq. (3.7) can be written as

x(t) =
∞∑

n=−∞
X̃nej𝜔nt, (3.9)

where X̃n = 1
Tp
∫

Tp
0 x(t)e−j𝜔ntdt.

The complex Fourier series contains twice as many Fourier components as the real Fourier series,
so each component of the complex Fourier series is half the size of that in the real Fourier series.
For each component at a positive frequency, there is a corresponding component at a negative
frequency that has the same modulus but opposite phase. This means that the modulus is an even
function, and the phase is an odd function. Similarly, the real part of the complex Fourier series is
an even function and the imaginary part is an odd function. It is also a discrete spectrum as shown
in Figure 3.3. Note that if the periodic time history is symmetric about t = 0, then it is an even
function. In this case the Fourier series is also an even function, which means that the phase of
each Fourier coefficient is either 0∘ or 180∘. Note also that if the time series is symmetric about
x(t) = 0, then there is no DC component and the Fourier series consists of only odd harmonics.
This latter situation occurs for forced vibrations of a linear system if the system vibrates about its
static equilibrium position.

The next part of the derivation for the Fourier transform starts from the complex Fourier series.
Consider the periodic signal shown in Figure 3.4. For convenience it is taken to be symmetric about
t = 0 and has a fundamental period of Tp seconds. Following on from Eq. (3.9), the Fourier coeffi-
cients for the periodic signal in Figure 3.4 are then given by

X̃n = 1
Tp ∫

Tp∕2

−Tp∕2
x(t)e−j𝜔ntdt. (3.10)

Note that X̃n is a coefficient for the complex Fourier series, which has a double-sided spectrum (it
has both positive and negative frequencies), and thus it is half of the equivalent coefficient for the
corresponding real Fourier series, which has a single-sided spectrum (it has only positive frequen-
cies). As shown in Figure 3.4, Tp is extended so that in the limit Tp →∞. In this case the frequency
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Figure 3.3 Modulus and phase spectrum of the complex Fourier series.
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Figure 3.4 A periodic signal with period Tp that is extended to infinity.

difference between the harmonics Δf = Δ𝜔/2𝜋 = 1/Tp → 0, so that Eq. (3.10) becomes

X̃n
Tp→∞
Δf→0

= Δf
∫

Tp∕2

−Tp∕2
x(t)e−j𝜔ntdt. (3.11)

Thus, as Tp increases the number of frequency components in the spectrum increases. However,
to maintain the same level of energy in the spectrum there must be a reduction in the amplitude of
the Fourier components, so that as Δf → 0 then X̃n → 0. To overcome this situation, both sides of
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Eq. (3.11) are divided by Δf and the limit taken, which results in

X(f ) =
∫

∞

−∞
x(t)e−j2𝜋ftdt, (3.12)

where, because the spectrum is now a continuum, 2𝜋f = 𝜔 instead of 𝜔n is written, and X(f ) =
X̃n∕Δf ||Tp→∞

Δf → 0

, which is a complex amplitude divided by a frequency bandwidth (sometimes called

an amplitude density). Equation (3.12) is the Fourier transform (FT) of x(t). Note that this is fun-
damentally different to the Fourier series, in which a Fourier coefficient has the same units as the
time domain quantity. For example, if x(t) is a displacement and has units of metres (m), the Fourier
coefficients also have the units of m. However, with the Fourier transform, the units are different.
If the Fourier transform of x(t) is calculated according to Eq. (3.12), then the units are m/Hz. It is
important to note that whereas the Fourier series is used to determine the spectrum of a periodic
time series, the Fourier transform can be used to determine the spectrum (with different units of
course) of any time series.

3.2.1 Example – SDOF system

Consider the SDOF mass-spring-damper system in which m is the mass, k is the stiffness, and
c is the damping, described in Chapter 2. It is represented in block diagram form in Figure 3.5,
in which displacement is the measured response. The units are shown to make it clear why the
force input and displacement output spectra are in terms of amplitude densities, i.e. N/Hz and
m/Hz respectively, whereas the unit for the displacement FRF, (called receptance), is m/N, which
is not an amplitude density. The relationship between the receptance FRF H(j𝜔) and the IRF h(t)
is given by

H(j𝜔) =
∫

∞

−∞
h(t)e−j𝜔tdt, (3.13)

where h(t) = 1
m𝜔d

e−𝜁𝜔nt sin(𝜔dt) for t ≥ 0, which is given by Eq. (2.15a), where 𝜔n is the

undamped natural frequency of the system, 𝜁 is the damping ratio, and 𝜔d = 𝜔n
√

1 − 𝜁2 is the

m
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Figure 3.5 Block diagram of an SDOF system.



�

� �

�

3.3 The Discrete Time Fourier Transform (DTFT) 45

H (j!)

H+ ( j!)H<
+ ( j!) = H+ (–j!)

log

�( j!)
!

!

Figure 3.6 Double-sided receptance FRF.

damped natural frequency. Substituting for sin(𝜔dt) =
(

ej𝜔dt − e−j𝜔dt) ∕j2 in h(t) results in

h(t) = u(t)
j2m𝜔d

(e−st − e−s∗t), (3.14)

where u(t) is the Heaviside function, which ensures that h(t) = 0 for t< 0, s = 𝜁𝜔n − j𝜔d, and *
denotes the complex conjugate. Substituting Eq. (3.14) into Eq. (3.13) and noting that the Fourier
transform of u(t)e−st is 1/(s+ j𝜔) results in

H(j𝜔) = 1
m
(
𝜔2

n − 𝜔2 + j2𝜁𝜔𝜔n
) , for −∞ < 𝜔 < ∞. (3.15a)

As 𝜔n =
√

k∕m and 𝜁 = c∕2
√

mk, Eq. (3.15a) can be written as

H(j𝜔) = 1
k − 𝜔2m + j𝜔c

, for −∞ < 𝜔 < ∞. (3.15b)

Note that Eq. (3.15b) is identical to Eq. (2.26), except that it is defined for both positive and
negative frequencies. It is plotted in Figure 3.6. It can be seen that the part of the receptance at
negative frequencies is equal to the complex conjugate of the receptance at positive frequencies,
i.e. H∗

+(j𝜔) = H(−j𝜔).

3.3 The Discrete Time Fourier Transform (DTFT)

In the previous section it was shown that the Fourier series of a continuous time history results
in a discrete spectrum, and the Fourier transform of the same time history results in a continuous
spectrum. In many cases, however, a measured time history is not continuous, but is a sequence of
sampled data points, such as that illustrated in Figure 3.7. This is the case in numerical simulations,
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Figure 3.7 A continuous time history x(t) and the same time history sampled every Δt seconds.
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Figure 3.8 An impulse train of delta functions.
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Figure 3.9 Impulse train representation of a sampled time history.

and when measured data are sampled prior to processing in a computer. The time period between
each data point is Δt, and the value of the time series x(t) at the n-th data point is x(nΔt). The
question is, what operation needs to be performed on the sampled data that will give a similar
result to the Fourier transform of the continuous time series? This is not tackled directly, but is
studied using an impulse train of delta functions i(t), such as that shown in Figure 3.8. The delta
function and its properties are described in Appendix E. If the continuous time history is multiplied
by a train of delta functions, the result is an impulse train of delta functions modulated by the time
history as shown in Figure 3.9. Note that i(t)x(t)≠ x(nΔt), (Shin and Hammond, 2008), because the
delta function does not have the same units as the sampled signal x(nΔt). However, using the train
of delta functions in this way is mathematically convenient in the development of the discrete time
Fourier transform (DTFT).

The train of delta functions, spaced at time Δt apart, is described by

i(t) =
∞∑

n=−∞
𝛿(t − nΔt), (3.16)

and the Fourier transform of i(t)x(t) is given by

Xs(f ) =
∫

∞

−∞
i(t)x(t)e−j2𝜋ftdt, (3.17)
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where the subscript s is used to show that Xs(f ) is different from X(f ). Substituting Eq. (3.16) into
Eq. (3.17) results in

Xs(f ) =
∫

∞

−∞
x(t)

∞∑
n=−∞

𝛿(t − nΔt)e−j2𝜋ftdt. (3.18)

Changing the order of the summation and integration, and noting from the sifting property of the
delta function described in Appendix E, that ∫ ∞

−∞x(t)e−j2𝜋ft𝛿(t − nΔt)dt = x(nΔt)e−j2𝜋fnΔt, Eq. (3.18)
becomes

Xs(f ) =
∞∑

n=−∞
x(nΔt)e−j2𝜋fnΔt, (3.19)

where x(nΔt) is the sampled time history as shown in Figure 3.7. The operation described in
Eq. (3.19) is known as the discrete time Fourier transform (DTFT). The question remains as to
how Xs(f ) is related to X(f ). To show this, an alternative representation of the impulse train of
delta functions is used. In Appendix E it is shown that i(t) can be written in terms of its Fourier
series as

i(t) = 1
Δt

∞∑
n=−∞

ej2𝜋nt∕Δt. (3.20)

Substituting Eq. (3.20) into Eq. (3.17) results in

Xs(f ) =
1
Δt∫

∞

−∞
x(t)

∞∑
n=−∞

ej2𝜋nt∕Δte−j2𝜋ftdt. (3.21)

Changing the order of the summation and integration, and noting that f s = 1/Δt, which is the
frequency at which the data are sampled (sampling frequency), Eq. (3.21) can be written as

Xs(f ) = fs

∞∑
n=−∞∫

∞

−∞
x(t)e−j2𝜋(f−nfs)tdt. (3.22)

Noting that X(f − nfs) = ∫
∞
−∞x(t)e−j2𝜋(f−nfs)tdt, Eq. (3.22) can be written as

Xs(f ) = fs

∞∑
n=−∞

X(f − nfs) (3.23)

This is an important result, which shows how the DTFT of a sampled time history is related to
the FT of the same time history in continuous form. An example of the FT of x(t), which is the
displacement of an SDOF system when subject to an impulse force in the form of a delta function,
and the DTFT of the sampled version x(nΔt) are shown in Figure 3.10. Examining this figure and
Eq. (3.23) it can be seen that there are several important features of the DTFT of x(nΔt) compared
to the FT of x(t):

● The spectrum Xs(f ) is a scaled periodic version of X(f ), repeating every f s Hz, and has compo-
nents at both positive and negative frequencies. Note that the units for Xs(f ) are the same as the
units for x(nΔt), i.e. it is not an amplitude density which is the case for X(f ). This can be easily
seen by examining Eq. (3.19), and Eq. (3.23), which contains the scaling factor f s.

● Xs(f ) is a continuous function, even though it is derived from a discrete time history.
● The part of the spectrum of Xs(f ), which contains all the information related to the original con-

tinuous time history is in the frequency range 0≤ f ≤ f s/2.
● The part of the spectrum of Xs(f ) in the frequency range f s/2< f ≤ f s is the complex conjugate of

Xs(f ) in the frequency range 0≤ f ≤ f s/2.
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Figure 3.10 DTFT of x(nΔt) compared to the FT of x(t).

● When Xs(f ) is calculated from x(nΔt) using Eq. (3.19), the spectrum X(f ) cannot be faithfully
determined for all frequencies in the range 0≤ f ≤ f s/2. This is due to the phenomenon of aliasing,
which can occur when data are sampled. The effect of aliasing can be seen in Figure 3.10 and is
discussed in detail in Chapter 4.

3.4 The Discrete Fourier Transform (DFT)

The final step in the derivation of the DFT is to discretise Xs(f ), so that Xs(f ) is sampled every Δf
Hz, and there are a finite number of data points, 1, 2, 3, …, N in the spectrum. Thus, there are N
data points in the time domain, with the first data point at t = 0 and the N-th data point coinciding
with the time length of the data T, and there are N data points in the frequency domain with the
first data point at f = 0 and the N-th data point coinciding with the sampling frequency f s. The
frequency spacing (or frequency resolution) is given by Δf = f s/N, and the k-th frequency is given
by kΔf = kf s/N. In this case, by substituting for f = kf s/N into Eq. (3.19), and taking into account
the finite number of data points N in the sampled time history, results in

X(kΔf ) =
N−1∑
n=0

x(nΔt)e−j(2𝜋∕N)kn, (3.24)

which is the DFT of x(nΔt). Note X(kΔf ) is a periodic function, with a period of N. Note also that the
sampling in frequency effectively imposes a periodic structure on the sampled time series x(nΔt).
Thus, when the DFT is used to transform a finite length signal with duration T, into the frequency
domain, it is implicit that the signal is a single period of a periodic sequence that repeats every T
seconds.
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Figure 3.11 DFT of h(nΔt) compared to the FT of h(t) of the displacement IRF of an SDOF system.

The DFT is calculated by a computer using an algorithm known as the fast Fourier transform
(FFT). The modern generic FFT algorithm is generally attributed to (Cooley and Tukey, 1965), but
a similar version had been used by Karl Friedrich Gauss in 1805 to interpolate the orbits of asteroids
from sample observations (Heideman et al., 1984). More details about FFT algorithms can be found
in (Kumar et al., 2019).

To illustrate the key parameters to be chosen when using the DFT to transform sampled data
from the time domain to the frequency domain, consider the sampled displacement IRF h(nΔt)
shown in Figure 3.11. The two parameters are the sampling frequency of f s = 1/Δt Hz and the
time duration T seconds. Overlaid in the figure is the continuous IRF h(t). It is important to have a
long enough time history to capture the decay of vibration, which is governed by the product of the
damping ratio and the undamped natural frequency in this case, i.e. 𝜁𝜔n. The samples are denoted
by small circles. Note that although the samples are explicitly shown in this figure, in many cases
they are not shown. Lines are generally drawn between the samples, giving a plot the appearance
of being continuous.

The amplitude and phase of the receptance FRF are also shown in Figure 3.11. The theoretical
FRF and the FRF calculated using the DFT of the sampled IRF are overlaid. Note how the param-
eters chosen when sampling the IRF affect the FRF, which has N points – the same number as
the IRF, a frequency range from 0− f s Hz, and a frequency resolution of Δf = 1/(NΔt). All the
information from h(nΔt) is contained in the lower half of the frequency range from 0≤ f < f s/2 Hz.
The information in the frequency range from f s/2 to f s Hz is that shown in Figure 3.6 for neg-
ative frequencies. As noted previously, this is simply the complex conjugate of the correspond-
ing component for positive frequencies. As can be seen in Figure 3.11, the spectrum calculated
using the DFT is restricted to the frequency range 0− f s Hz, in which there are N points, and
H(NΔf − kΔf ) = H*(kΔf ). It can also be seen in Figure 3.11 that, as with the DTFT, the scaling
factor between the actual spectrum and that calculated using the DFT, is the sampling frequency f s.
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In Figure 3.11, it is clear that at frequencies close to f s/2 there is a difference between the
theoretical FRF and that calculating using the DFT of the sampled IRF. This occurs because of
under sampling, which means that high-frequency components of the original time series are not
accurately captured and manifest themselves at low frequencies. This effect is called aliasing and
is discussed in detail in Chapter 4.

There is a subtle difference between the spectrum calculated using the DFT if there is an odd
or an even number of points. To illustrate the difference, consider two simple situations shown in
Figure 3.12. Two identical time histories of 1 second duration are sampled at different rates, one
at 4 Hz and one at 5 Hz. The frequency resolutions of the two spectra are thus both 1 Hz, but the
number of points in each case, given by N = f sT + 1, is 5 and 6, respectively. In the first case (an odd
number of points), the values of the spectral components up to and including f s/2= 2 Hz are the DC
component, and X1 at 1 Hz, and X2 at 2 Hz. With the exception of the DC term, these components
appear in the second half of the spectrum in complex conjugate form, so that X∗

1 and X∗
2 occur at

3 and 4 Hz, respectively. In the second case (an even number of points), there is no component at
f s/2 = 2.5 Hz. As in the previous cases the spectral components in the lower part of the spectrum
are the DC component, and X1 at 1 Hz, and X2 at 2 Hz. However, now the corresponding complex

X1 X2
X*

2 X*
2

X*
1 X*

1X1
X2 X3

t

f

f

fs∕2 fs fs

f

DCDC

N - odd N - even

Time histories

Spectra

0 0.25 0.5 0.75 1 t0 0.2 0.4 0.6 0.8 1

x(nÊt)

X(kÊf )

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4 5

f0 1 2 3 4 5

�(kÊf )

fs∕2

Figure 3.12 Illustration of the difference between a DFT of a signal sampled with an odd number of points
compared to a signal sampled with an even number of points.
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conjugates occur at frequencies ‘mirrored’ in the component at 3 Hz, such that X∗
1 and X∗

2 occur at
4 and 5 Hz, respectively. Note that the component at 3 Hz is purely real.

MATLAB Example 3.1

In this example, the DFT of the displacement IRF of an SDOF system is compared with the
theoretical receptance FRF.

clear all

%% Parameters
m = 1; % [kg]
k = 10000; % [N/m]
z = 0.001;
c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); % [rad/s]
wd=sqrt(1-z ̂ 2)*wn; % [rad/s]

%% Time and frequency parameters
T=100; % [s]
fs=1000; % [Hz]
dt=1/fs; % [s]
t=0:dt:T; % [s]
df=1/T; % [Hz]
f=0:df:fs; % [Hz]
N=fs*T;

%% Theoretical IRF
h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]

%% Calculation of DFT
H=dt*fft(h);

%% Theoretical FRF
dff=.001; % [Hz]
fr=0:dff:fs/2; % [Hz]
w=2*pi*fr; % [rad/s]
HH=1./(k-w. ̂ 2*m+j*w*c); % [m/N]

%% Plot the results
figure (1)
plot(t,h,'linewidth',2,'Color',[.6 .6 .6])
grid;axis square
xlabel('time (s)');
ylabel('displacement IRF (m/Ns)');

figure (2)
plot(fr,20*log10(abs(HH)))
hold on
plot(f,20*log10(abs(H)))
grid;axis square
xlabel('frequency (Hz)');
ylabel('|receptance| (dB ref 1 m/N)');

figure (3)
plot(fr,180/pi*angle(HH))
hold on
plot(f,180/pi*angle(H))
grid;axis square
xlabel('frequency (Hz)');
ylabel('phase (degrees)');

% mass
% stiffness
% damping ratio
% damping factor
% natural frequency
% damped natural frequency

% duration of time signal
% sampling frequency
% time resolution
% time vector
% frequency resolution
% frequency vector
% number of points - 1

% impulse response

% calculation of receptance FRF

% frequency resolution
% frequency vector
% frequency in rad/s
% theoretical receptance FRF

% IRF

% modulus

% phase

(Continued)
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MATLAB Example 3.1 (Continued)

figure (4)
plot(real(HH),imag(HH))
hold on
plot(real(H(1:N/2+1)),imag(H(1:N/2+1)))
grid;axis square
xlabel('real\{receptance\} (m/N)');
ylabel('imag\{receptance\} (m/N)');

figure (5)
semilogx(fr,20*log10(abs(HH)))
hold on
semilogx(f(1:N/2+1),20*log10(abs(H(1:N/2+1))))
grid;axis square
xlabel('frequency (Hz)');
ylabel('|receptance| (dB ref 1 m/N)');

figure (6)
semilogx(fr,180/pi*angle(HH))
hold on
semilogx(f(1:N/2+1),180/pi*angle(H(1:N/2+1)))
grid;axis square
xlabel('frequency (Hz)');
ylabel('phase (degrees)');

% Nyquist

% modulus

% phase

Results
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MATLAB Example 3.1 (Continued)
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Comments:

1. An exercise for the reader is to explore what happens to the calculated FRF when
the sampling frequency/time resolution is changed, and when the length of the time
history/frequency resolution is changed.

2. An exercise for the reader is to repeat the exercise for different values of damping.

3.5 Inverse Fourier Transforms

In the same way that the FT transforms time domain data into frequency domain data, the inverse
Fourier transform (IFT) transforms frequency domain data into time domain data. The FT, the
DTFT, and the DFT all have inverse transforms. These transforms can all be derived in a straight-
forward manner.

First consider the IFT, in which the continuous amplitude density X(f ) is transformed to a con-
tinuous time series x(t). Recall Eq. (3.9), which describes the complex Fourier series written in
terms of X̃n rather than Xn to give

x(t) =
∞∑

n=−∞
X̃nej𝜔nt, (3.25)

where X̃n is the displacement amplitude of the n-th harmonic. In the case when the frequency
difference between the harmonics Δf → 0, then X(fn) = X̃n∕Δf , so that Eq. (3.25) can be written as
x(t) =

∑∞
n=−∞ X(fn)ej2𝜋fntΔf , where 2𝜋f n = 𝜔n. This can be further written in continuous form to

give the IFT, as

x(t) =
∫

∞

−∞
X(f )ej2𝜋ftdf . (3.26)
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The inverse discrete time Fourier transform (IDTFT) can be derived from Eq. (3.26), by substitut-
ing for t = nΔt. Noting that within the frequency range −f s/2≤ f ≤ f s/2, X(f ) = Xs(f )/f s, and Xs(f )
is periodic in frequency with period of f s. Eq. (3.26) becomes

x(nΔt) = 1
fs ∫

fs∕2

−fs∕2
Xs(f )ej2𝜋fnΔtdf , (3.27)

which is the definition of the IDTFT.
The inverse discrete Fourier transform (IDFT) can be derived from Eq. (3.27). First note

from Figure 3.10 that Xs(f ) for f s/2< f ≤ f s is equal to Xs(f ) for− f s/2≤ f < 0 so that Eq. (3.27)
becomes

x(nΔt) = 1
fs ∫

fs

0
Xs(f )ej2𝜋fnΔtdf . (3.28)

Next, writing Eq. (3.28) in terms of discrete frequency kΔf results in

x(nΔt) =
Δf
fs

N−1∑
k=0

Xs(kΔf )ej2𝜋kΔfnΔt. (3.29)

Finally, because Δf = f s/N and f s = 1/Δt, Eq. (3.29) becomes

x(nΔt) = 1
N

N−1∑
k=0

X(kΔf )ej(2𝜋∕N)kn, (3.30)

which is the definition of the IDFT. Note that as with X(kΔf ), x(nΔt) is also periodic with period N.
Thus, the process of calculating x(nΔt) from X(kΔf ) imposes a periodic structure on x(nΔt) in the
same way that sampling the time history results in a periodic structure in the frequency domain,
as discussed previously. The effect of this is discussed further in Chapter 4.

To illustrate the IDFT, consider again the receptance function shown in Figure 3.11. The
starting point is the analytical expression given by H(j𝜔) = 1/(k−𝜔2m+ j𝜔c). This is sampled
in the frequency range with a frequency resolution Δf within the frequency range 0 to f s/2.
The ‘double-sided’ spectrum is then formed by using the complex conjugates of the frequency
components of the sampled version of H(j𝜔) within this frequency range. Care must be taken
to ensure that the part of the spectrum from f s/2 to f s is formed correctly depending on whether
there is an even or an odd number of points, as discussed in Section 3.4. The receptance is shown
in Figure 3.13, labelled as H(f ) together with the reconstructed complex conjugate mirror of the
spectrum. Also shown is H(kΔf )/f s, to show the difference between the double-sided spectrum
reconstructed from the theoretical FRF compared to that determined from the IRF using the
DFT. The difference is because the double-sided spectrum formed from the theoretical FRF only
has frequency content up to f s/2, whereas H(kΔf )/f s contains this plus components from an
infinite number of aliased frequencies (which is discussed in detail in Chapter 4). Thus, the two
spectra are not exactly the same, so when their IDFTs are calculated the IRFs are not exactly
the same. These are plotted in the lower part of Figure 3.13. It can be seen that the differences
between the IRFs are small. However, this is not always the case, as illustrated in Chapter 4. The
difference in the IRF calculated from the theoretical FRF and h(nΔt) occurs at the beginning
of the time history. This can be seen by first moving the end of the time history labelled A to
the beginning as shown in Figure 3.13, which allows a complete picture of the IRF for t< 0. Of
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Figure 3.13 IDFT of the receptance of an SDOF system.

course, this should be zero in principle, because the system should remain at rest until impacted
(the constraint of causality). Examining the close-up of the beginning of the time history in
Figure 3.13, it can be seen that the IRF calculated from the theoretical FRF has a very small
non-zero value for t< 0. This is due to the implicit low-pass filter applied to the theoretical FRF,
by the restriction of the maximum frequency content to f s/2. Issues such as this, concerning
the IDFT in transforming data from the frequency to the time domain, are discussed further in
Chapter 4.
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MATLAB Example 3.2

In this example, the IDFT of the receptance FRF of an SDOF system is compared with the
theoretical displacement IRF.

clear all

%% Parameters
m = 1; % [kg]
k = 10000; % [N/m]
z = 0.08; c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-z ̂ 2)*wn; % [rad/s]

%% Time and frequency parameters
T=2; % [s]
fs=400; % [Hz]
dt=1/fs; t=0:dt:T; % [s]
df=1/T; f=0:df:fs; % [Hz]

%% Theoretical IRF
h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]

%% Calculation of DFT
H=dt*fft(h);

%% Theoretical FRF
dff=df; fr=0:df:fs/2; % [Hz]
w=2*pi*fr; % [rad/s]
HH=1./(k-w. ̂ 2*m+j*w*c); % [m/N]

%% Calculation of IDFT
Hd=[HH fliplr(conj(HH))];
Hdd=Hd(1:length(Hd)-1);
hd=fs*ifft(Hdd); % [m/Ns]

%% Plot results
figure (1)
plot(f,20*log10(abs(Hdd)))
hold on
plot(f,20*log10(abs(H)))
xlabel('frequency (Hz)');
ylabel('|receptance| (dB ref 1 m/N)');

figure (2)
plot(f,180/pi*angle(Hdd))
hold on
plot(f,180/pi*angle(H))
xlabel('frequency (Hz)');
ylabel('phase (degrees)');

figure (3)
plot(t,hd,t,h)
xlabel('time (s)');
ylabel('IRF (m/Ns)');

% see MATLAB example 3.1

% see MATLAB example 3.1

% IRF

% calculation of receptance FRF

% see MATLAB example 3.1

% form the double-sided spectrum

% IDFT

% modulus

% phase

% IRF

(Continued)
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MATLAB Example 3.2 (Continued)

Results
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Comments:

1. An exercise for the reader is to explore what happens to the calculated IRF when the stiff-
ness, damping, and mass are changed. Also, investigate what happens to the IRF when the
sampling frequency or the frequency resolution is changed.

3.6 Summary

Starting from the real Fourier series (FS), this chapter has derived the complex Fourier series, the
Fourier transform (FT), the discrete time Fourier transform (DTFT), and the discrete Fourier trans-
form (DFT). These relationships are summarised in Table 3.1, in which it is assumed that the time
series is a displacement that has the unit of metre. The DFT is arguably the most important trans-
form in vibration engineering as it transforms sampled data, which is measured or simulated in the
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Table 3.1 Fourier transforms and inverse Fourier transforms for a displacement time history.

continuousdiscrete continuous discrete

continuous continuouscontinuous continuous

continuous continuous continuous continuous

discrete continuousdiscretecontinuous

discretediscrete discretediscrete

› ›

time domain, to frequency domain data, where most of the analysis is conducted. As shown in this
chapter, there are some issues when working with sampled data, such as aliasing and scaling, and
because the actual continuous spectrum is important from a physical point view, the relationship
between the sampled and continuous spectra is extremely important. This has been studied briefly
in this chapter, but it is explored in depth in Chapter 4. Also of importance is the inverse Fourier
transform (IFT), which transforms data from the frequency domain to the time domain.
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4

Numerical Computation of the FRFs and IRFs of an SDOF System

4.1 Introduction

In Chapter 2 the impulse response function (IRF), a time domain quantity, and the frequency
response function (FRF), a frequency domain quantity, were introduced as important descriptors
of vibrating systems. The way in which the FRF can be calculated from the IRF using the Fourier
transform (FT), and the calculation of the IRF from the FRF using the inverse Fourier transform
(IFT) were discussed in Chapter 3. In practice these operations are carried out using sampled data
in the time and the frequency domains using the discrete versions of these transforms, i.e. the DFT
and the IDFT, which were also discussed in Chapter 3. The processing of sampled data results in
IRFs and FRFs that have some differences to their continuous counterparts. When analysing these
quantities, it is important to know which of their features are due to the physical properties of the
vibrating system, and which of their features are artefacts due to signal processing. In this chapter,
three IRFs and their counterpart FRFs are analysed in detail for an SDOF system. They are the
displacement, velocity, and acceleration IRFs, and the receptance, mobility, and acceleration FRFs,
as these are quantities most frequently involved in the modelling and measurement of vibrating
systems. The theoretical IRFs and FRFs are plotted in Figure 4.1, together with the input–output
relationship of an SDOF system shown in block diagram form. The FRFs are plotted on log–log
axes so that the low- and high-frequency asymptotes governed by stiffness and mass, respectively,
are represented by straight lines as they are proportional to f 0, f ±1, or f ±2 depending on the FRF.

When a continuous time series is sampled and its DFT calculated, two problems occur. The first is
aliasing, which was seen in Chapter 3, and discussed at length in Appendix F. The other is distortion
of the signal if it has a non-zero value at the beginning or end of the time history. Aliasing occurs
for all the FRFs considered, but distortion only occurs for velocity and acceleration IRFs, and their
corresponding FRFs. Distortion does not occur for the displacement IRF and the receptance FRF,
because the IRF is zero at the beginning, and is zero at the end provided that the time window used
to capture the data is long enough.

4.2 Effect of Sampling on the FRFs

To gain some insight into the parameters that cause aliasing and distortion, some analytical expres-
sions are derived for the FRFs at zero frequency f = 0, and at half the sampling frequency f = f s/2.

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations

http://www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
Pavilion
#custom
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Figure 4.1 Theoretical IRFs and FRFs of an SDOF system.

The effects are different in the receptance, mobility, and accelerance FRFs, so they are considered
separately.

4.2.1 Receptance

As discussed in Chapters 2 and 3, the displacement IRF is given by h(t) = 1
m𝜔d

e−𝜁𝜔nt sin(𝜔dt) for
t ≥ 0 and the receptance FRF is given by H(j𝜔) = 1/(k−𝜔2m+ j𝜔c), for − ∞ <𝜔<∞.

Aliasing at f = 0
The value of the DFT(h(t))/f s at a frequency of zero is the sum of the actual value of H(0) plus all
of the aliases, which occur at frequencies of f = nf s for integer values of n between −∞ and ∞, as
shown in Appendix F. It is given by

DFT(h(t))
fs

||||f=0
=

∞∑
n=−∞

H(nfs). (4.1)
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where H(nf s) = 1/(k− (2𝜋nf s)2m+ j2𝜋nf sc). Now, H(0) = 1/k, and provided that f s ≫ f n in which
fn = (

√
k∕m)∕2𝜋, then H(nf s)≈ − 1/[(2𝜋nf s)2m], so that Eq. (4.1) becomes

DFT(h(t))
fs

||||f=0
≈ 1

k
− 1

2(𝜋fs)2m

∞∑
n=1

1
n2 . (4.2a)

Noting that
∑∞

n=1
1

n2 = 𝜋2

6
(Abramowitz and Stegun, 2014), Eq. (4.2a) becomes

DFT(h(t))
fs

||||f=0
≈ 1

k
− 1

12f 2
s m

. (4.2b)

The value of the aliased version of H(0), given by Eq. (4.2b) divided by the approximate true value
of H(0)= 1/k, is 1 − 𝜋2

3

(
fn
fs

)2
. Note that the aliased version of H(0) is less than the true value of H(0),

and that the amount by which the FRF is changed due to aliasing is a function of the ratio of the
natural frequency of the system to the sampling frequency.

Aliasing at f = f s/2
Following the procedure for determining the value of DFT(h(t))/f s at f = 0, the value of the
|DFT(h(t))|/f s at a frequency of f s/2 is given by

||||
DFT(h(t))

fs

||||f=fs∕2
=
|||||

∞∑
n=−∞

H((n − 1∕2)fs)
|||||
. (4.3)

If f s ≫ f n, then H((n − 1∕2)fs) ≈ −1∕
[
(2n − 1)2𝜋2f 2

s m
]
, so that Eq. (4.3) becomes

||||
DFT(h(t))

fs

||||f=fs∕2
≈ 2

(𝜋fs)2m

∞∑
n=1

1
(2n − 1)2 . (4.4a)
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Figure 4.2 Receptance FRF of an SDOF system, showing the effects of aliasing on the DFT(h(t))/f s.
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Noting that
∑∞

n=1
1

(2n−1)2
= 𝜋2

8
(Abramowitz and Stegun, 2014), Eq. (4.4a) becomes

||||
DFT(h(t))

fs

||||f=fs∕2
≈ 1

4f 2
s m

. (4.4b)

The value of the aliased version of |H(f s/2)| given by Eq. (4.4b), divided by the approximate true
value of |H(fs∕2)| = 1∕

(
𝜋2f 2

s m
)
, is simply 𝜋2/4. This shows that the difference between the value

of the aliased version of |H(f s/2)| and its actual value is a constant, independent of the sampling
frequency, which means that aliasing always occurs.

An example of the modulus and phase of the receptance FRF, and its estimate calculated by
applying the DFT to the displacement IRF, is shown in Figure 4.2. The differences between the
actual FRF and the estimate at f = 0 and f = f s/2 due to aliasing are also shown.

MATLAB Example 4.1

In this example, the effects due to aliasing on the receptance FRF of an SDOF system are
examined. Two cases are considered, one where aliasing is apparent at very low frequencies
and one where aliasing is apparent at high frequencies.

clear all

%% Parameters
m = 1; % [kg]
k = 500000;%k=10000; % [N/m]
z = 0.01; c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-z ̂ 2)*wn; % [rad/s]

%% Time and frequency parameters
T=100; % [s]
fs=400; % [Hz]
dt=1/fs; t=0:dt:T; % [s]
df=1/T; f=0:df:fs; % [Hz]
N=length(t);

%% Theoretical receptance IRF
h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]

%% Calculation of DFT
H=dt*fft(h);

%% Theoretical receptance FRF
dff=.001; fr=0:dff:fs; % [Hz]
w=2*pi*fr; % [rad/s]
HH=1./(k-w. ̂ 2*m+j*w*c); % [m/N]

%% Calculation of aliased response
for p=1:20;
f1=(p-1)*fs:dff:p*fs; % [Hz]
w1=2*pi*f1; % [rad/s]
HP(p,:)=1./(k-w1. ̂ 2*m+j*w1*c); % [m/N]
f2=-p*fs:dff:-(p-1)*fs; % [Hz]
w2=2*pi*f2; % [rad/s]
HM(p,:)=1./(k-w2. ̂ 2*m+j*w2*c); % [m/N]

end

% see MATLAB Example 3.1
% large k to illustrate aliasing
at low frequencies, and small k
to illustrate aliasing at high
frequencies

% see MATLAB Example 3.1

% IRF

% calculation of receptance FRF

% theoretical FRF

% frequency vector

% aliased FRF for +ve freq.
% frequency vector

% aliased FRF for -ve freq.

(Continued)
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MATLAB Example 4.1 (Continued)

MP=sum(HP); MS=(sum(HM));
HT1=MP+MS;
HT=HT1(1:(N+1)/2);
HA=[HT fliplr(conj(HT))];
HA1=HA(1:length(f));
H0=1/k-1/(12*fs ̂ 2*m);
H1_2=1/(4*fs ̂ 2*m);

%% Plot results
figure (1)
semilogx(fr,20*log10(abs(HH)))
hold on
semilogx(f,20*log10(abs(H)))
hold on
semilogx(fr,20*log10(abs(HT1)))
hold on
plot(1,20*log10(H0),'o')
plot(1,20*log10(abs(1/k)),'o')
xlabel('frequency (Hz)');
ylabel('|receptance| (dB ref 1 m/Ns)');

figure (2)
semilogx(fr,20*log10(abs(HH)))
hold on
semilogx(f,20*log10(abs(H)))
hold on
semilogx(fr,20*log10(abs(HT1)))
hold on
plot(fs/2,20*log10(abs(1/((pi*fs). ̂ 2*m))),'o')
plot(fs/2,20*log10(H1_2),'o')
xlabel('frequency (Hz)');
ylabel('|receptance| (dB ref 1 m/Ns)');

% summing all aliases
% total aliased FRF

% double sided spectrum

% value of aliased FRF at f=0
% value of aliased FRF at f=fs/2

% figure for small k
% theoretical FRF

% FRF from DFT

% theoretical aliased FRF

% value of HT1 at f=0
% value of HH at f=0

% figure for large k
% theoretical FRF

% FRF from DFT

% theoretical aliased FRF

% value of abs(HT1) at f=fs/2
% value of abs(HH) at f=fs/2

Results
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Comments
1. An exercise for the reader is to explore what happens to the FRF calculated using the DFT

when the damping and mass are changed. Also, plot the phase as a function of frequency
to demonstrate that aliasing does not have a large effect on the phase spectrum.



�

� �

�

66 4 Numerical Computation of the FRFs and IRFs of an SDOF System

4.2.2 Mobility

The mobility FRF is the Fourier transform of the velocity IRF discussed in Chapter 2. The
velocity IRF is given by ḣ(t) = 𝜔n

m𝜔d
e−𝜁𝜔nt cos(𝜔dt + 𝜃) for t ≥ 0, where 𝜃 = tan−1(𝜁∕

√
1 − 𝜁2),

and the mobility FRF is determined by calculating the Fourier transform of ḣ(t) to give
Hvel(j𝜔) = j𝜔/(k−𝜔2m+ j𝜔c), for − ∞ <𝜔<∞. The effects of aliasing can be determined in a
similar way to that described for receptance, but there is an additional complication in this case
due to sampling, which distorts the velocity IRF. This is shown in Figure 4.3. The velocity IRF
changes instantaneously from 0 to 1/m at t = 0, because of the change in momentum of the mass
due to the excitation by the impulsive force described by a delta function. However, this behaviour
cannot be captured by sampling. To illustrate what happens, a close-up of ḣ(t) is shown in the
inset in Figure 4.3. It can be seen that an additional component has to be considered, which is
given by

ḣa(t) =
1

mΔt
t + 1

m
− Δt ≤ t ≤ 0, (4.5)

due to a sample, which has a value of zero at t = −Δt. This is because the Fourier transform assumes
that the time history to be transformed is periodic, and this is the last sample of the previous period.
The modified velocity IRF is, therefore, given by

ḣM(t) = ḣ(t) + ḣa(t). (4.6)

The Fourier transform of ḣM(t) is equal to 
{

ḣ(t)
}
+ 

{
ḣa(t)

}
, where the 

{
ḣa(t)

}
is given by1

Ha(j𝜔) =
j
𝜔m

(1 − ej𝜔Δt∕2sinc(fΔt)). (4.7)

Note that the DFT(ḣ(t))∕fs is the same as the aliased frequency domain sampled version of
{ḣM(t)}.

The value of the DFT( ̇h(t))∕fs at f = 0
The value of the DFT(ḣ(t))∕fs at zero frequency is the sum of Hvel(0)+Ha(0) plus all of their
aliases, which occur at frequencies of f = nf s for integer values of n between −∞ and ∞. It is

t

Addition due to sampling

Sample

Theory

�t

1
m

t = 0

h(t) 

Figure 4.3 Velocity IRF of an SDOF system. The inset shows the details of sampling at the start of the IRF,
close to t = 0.

1 sinc(fΔt) = sin(𝜋fΔt)/(𝜋fΔt), which is the normalized sinc function.
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given by

DFT(ḣ(t))
fs

|||||f=0
=

∞∑
n=−∞

(Hvel(nfs) + Ha(nfs)). (4.8a)

As discussed in Chapter 3, the part of the FRF for negative frequencies is related to the part of
the FRF for positive frequencies by its complex conjugate, so that Eq. (4.8a) becomes

DFT(ḣ(t))
fs

|||||f=0
= Hvel(0) + 2

∞∑
n=1

Re{Hvel(nfs)} + Ha(0) + 2
∞∑

n=1
Re{Ha(nfs)}. (4.8b)

Now Hvel(0) = 0, so the contribution to the DC value of Hvel is only due to aliasing. The FRF at
frequency nf s is given by Hvel(nf s) = j2n𝜋f s/(k− (2n𝜋f s)2m+ j2n𝜋f sc), which can be approximated
at high frequencies, when f s ≫ f n, to

Hvel(nfs) ≈
j

−2n𝜋fsm + jc
. (4.9a)

This can be further approximated to

Hvel(nfs) ≈
c − j2n𝜋fsm
(2n𝜋fsm)2 , (4.9b)

which means that 2
∑∞

n=1 Re{Hvel(nfs)} ≈ 2c
(2𝜋fsm)2

∑∞
n=1

1
n2 . Noting that

∑∞
n=1

1
n2 = 𝜋2

6
(Abramowitz

and Stegun, 2014), this becomes

2
∞∑

n=1
Re{Hvel(nfs)} ≈ c

12f 2
s m2

, (4.10)

which is the contribution to response at zero frequency of the mobility FRF due to aliasing. The
contribution to the response at zero frequency from the additional component due to the sampling
effect contrasts with that for the mobility FRF. There are no aliases of this component because from
Eq. (4.7), sinc(nf sΔt)= sinc(n)= 0 provided that n≠ 0; however, Ha(0) =

1
2fsm

(which can be verified

by writing a series expansion of the terms in Eq. (4.7)). The DFT(ḣ(t))∕fs
|||f=0

can be determined by
substituting the component parts into Eq. (4.8b) to give

DFT(ḣ(t))
fs

|||||f=0
≈ 1

2fsm
+ c

12f 2
s m2

, (4.11a)

which can be written as, DFT(ḣ(t))
fs

|||f=0
≈ 1

2fsm

(
1 + 2𝜋

3
fn
fs
𝜁

)
. Provided that f n ≪ f s, this becomes

DFT(ḣ(t))
fs

|||||f=0
≈ 1

2fsm
. (4.11b)

which means that, provided that the approximation holds, the DFT of the sampled velocity IRF at
zero frequency is predominantly due to the additional component added to the IRF by sampling.
This is illustrated in an example after the sampling effects at f = f s/2 are considered.

The value of the DFT( ̇h(t))∕fs at f = f s/2
The value of the DFT(ḣ(t))∕fs at f = f s/2 is determined in a similar way to that for f = 0. It is
given by

DFT(ḣ(t))
fs

|||||f=fs∕2
=

∞∑
n=−∞

(Hvel((n − 1∕2)fs) + Ha((n − 1∕2)fs)), (4.12a)
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which can also be written as

DFT(ḣ(t))
fs

|||||f=fs∕2
= 2

∞∑
n=1

Re{Hvel((n − 1∕2)fs)} + 2
∞∑

n=1
Re{Ha((n − 1∕2)fs)}. (4.12b)

As before, the two components to the aliased FRF are calculated separately, with the mobility cal-
culated first, followed by the additional component due to sampling. The mobility FRF at frequen-
cies of (n− 1/2)f s is given by Hvel((n− 1/2)f s) = j(2n− 1)𝜋f s/(k− ((2n− 1)𝜋f s)2m+ j(2n− 1)𝜋f sc),
which can be approximated at high frequencies, when f s ≫ f n, to

Hvel((n − 1∕2)fs) ≈
1

c + j(2n − 1)𝜋fsm
. (4.13a)

This can be further approximated to

Hvel((n − 1∕2)fs) ≈
(

c
(𝜋fsm)2 − j

)
1

(2n − 1)2 , (4.13b)

which means that 2
∑∞

n=1 Re{Hvel((n − 1∕2)fs)} ≈ 2c
(𝜋fsm)2

∑∞
n=1

1
(2n−1)2

. Noting that
∑∞

n=1
1

(2n−1)2
= 𝜋2

8
(Abramowitz and Stegun, 2014), this becomes

2
∞∑

n=1
Re{Hvel((n − 1∕2)fs)} ≈ c

4f 2
s m2

. (4.14)

To determine the additional component due to sampling, it is first noted that at frequencies of
(n− 1/2)f s Eq. (4.7) becomes

Ha((n − 1∕2)fs) =
j

2𝜋(n − 1∕2)fsm
(
1 − ej𝜋(n−1∕2)fsΔtsinc((n − 1∕2)fsΔt)

)
, (4.15a)

which can be written as

Ha((n − 1∕2)fs) =
1

𝜋fsm(2n − 1)

(
2

𝜋(2n − 1)
+ j

)
, (4.15b)

so that 2
∑∞

n=1 Re{Ha((n − 1∕2)fs)} ≈ 4
𝜋2fsm

∑∞
n=1

1
(2n−1)2

. Again, noting that
∑∞

n=1
1

(2n−1)2
= 𝜋2

8
, this

becomes

2
∞∑

n=1
Re{Ha((n − 1∕2)fs)} ≈ 1

2fsm
. (4.16)

The DFT(ḣ(t))∕fs
|||f=fs∕2

is determined by substituting the component parts into Eq. (4.12b), to
give

DFT(ḣ(t))
fs

|||||f=fs∕2
≈ c

4f 2
s m2

+ 1
2fsm

, (4.17a)

which can be written as DFT(ḣ(t))
fs

|||f=fs∕2
≈ 1

2fsm

(
1 + 2𝜋𝜁 fn

fs

)
. Thus, provided that f n ≪ f s then

DFT(ḣ(t))
fs

|||||f=fs∕2
≈ 1

2fsm
, (4.17b)

which means that, provided the approximation holds, the DFT of the sampled velocity IRF at fre-
quency f = f s/2, is predominantly due to the additional component added to the IRF by sampling
and its aliases. The value of the mobility FRF calculated from the DFT of the velocity IRF given by
Eq. (4.17b), divided by the approximate value of Hvel(f s/2) = 1/(𝜋f sm), is simply 𝜋/2.

To illustrate the features discussed above, the modulus and phase of the mobility FRF, and their
estimates calculated numerically using the DFT, are shown in Figure 4.4. The differences between
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Figure 4.4 Mobility FRF of an SDOF system, showing the effects of sampling and aliasing on the
DFT(ḣ(t))∕fs.

the actual FRF and the estimate at f = 0 and f = f s/2 due to the distortion of the IRF caused by
sampling and aliasing are also shown. Note, in particular, the profound difference in the phase at
f = 0 and f = f s/2, which is predominantly because of the distortion at the beginning of the IRF
due to sampling, rather than aliasing, as shown in the analysis above. It is possible to determine
an approximate value for the lowest frequency at which the DFT will give a reasonably accurate
estimate for the modulus of the FRF. This can be calculated by setting the low-frequency asymptote
of the mobility FRF given by 2𝜋f /k to be equal to the mobility FRF calculated using the DFT, which
is 1/(2f sm). The result is the minimum frequency of 𝜋f 2

n∕fs, which is shown in Figure 4.4. This is
a useful expression as it relates the sampling frequency to the minimum frequency at which the
computed mobility FRF is valid. Note also that the frequency resolution is given by the reciprocal
of the duration of the time history of the velocity IRF (1/T). Thus, care should also be taken in the
choice of this parameter if very low-frequency information is required from the FRF.

MATLAB Example 4.2

In this example, the effects due to sampling the velocity IRF and aliasing on the mobility FRF
of an SDOF system are examined.

clear all

%% Parameters
m = 1; % [kg]
k = 10000; % [N/m]
z = 0.01; c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-z ̂ 2)*wn; % [rad/s]

%% Time and frequency parameters
T=100; % [s]
fs=1000; % [Hz]
dt=1/fs; t=0:dt:T; % [s]
df=1/T; f=0:df:fs; % [Hz]
N=length(t);

% see MATLAB example 3.1

% see MATLAB example 3.1

(Continued)
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MATLAB Example 4.2 (Continued)

%% Theoretical velocity IRF
hv1=1/(m*wd)*exp(-z*wn*t);
hv2=(wd*cos(wd*t)-z*wn*sin(wd*t));
hv=hv1.*hv2; % [m/Ns2]

%% Calculation of DFT
Hv=dt*fft(hv);

%% Theoretical mobility FRF
dff=.001; fr=0:dff:fs; % [Hz]
w=2*pi*fr; % [rad/s]
HV=j*w./(k-w. ̂ 2*m+j*w*c); % [m/Ns]

%% Calculation of aliased response
for p=1:20;
f1=(p-1)*fs:dff:p*fs; % [Hz]
w1=2*pi*f1; % [rad/s]
HP(p,:)=j*w1./(k-w1. ̂ 2*m+j*w1*c); % [m/Ns]
EP1=j./(w1*m);
EP2= exp(j*w1*dt/2).*sinc(w1/(2*pi)*dt);
EP(p,:)=EP1.*(1-EP2); % [m/Ns]
f2=-p*fs:dff:-(p-1)*fs; % [Hz]
w2=2*pi*f2; % [rad/s]
HM(p,:)=j*w2./(k-w2. ̂ 2*m+j*w2*c); % [m/N]
EM1=j./(w2*m);
EM2= exp(j*w2*dt/2).*sinc(w2/(2*pi)*dt);
EM(p,:)=EM1.*(1-EM2); % [m/Ns]

end
MP=sum(HP+EP); MS=(sum(HM+EM));
HT1=MP+MS;
HT=HT1(1:(N+1)/2);
HA=[HT fliplr(conj(HT))];
HA1=HA(1:length(f));

H0=1/(2*fs*m);
H1_2=H0;

%% Plot the results
figure (1)
semilogx(fr,20*log10(abs(HV)))
hold on
semilogx(f,20*log10(abs(Hv)))
hold on
semilogx(fr,20*log10(abs(HT1)))
hold on
plot(fs/2,20*log10(abs(1/(pi*fs*m))),'o')
plot(fs/2,20*log10(H1_2),'o')
plot(0.1,20*log10(H0),'o')
xlabel('frequency (Hz)');
ylabel('|mobility| (dB ref 1 m/Ns)');
grid;axis square

figure (2)
semilogx(fr,180/pi*(angle(HV)))
hold on
semilogx(f,180/pi*unwrap(angle(Hv)))
hold on
semilogx(fr,180/pi*(angle(HT1)))
xlabel('frequency (Hz)');
ylabel('phase (degrees)');

% velocity IRF

% calculation of mobility FRF

% see Matlab example 3.1

% mobility FRF

% frequency vector

% aliased FRF for +ve freq.
% aliased additional component
for +ve freq.

% frequency vector

% aliased FRF for -ve freq.
% aliased additional component
for -ve freq.

% sum of all aliases
% total aliased FRF

% double sided spectrum

% value of aliased FRF at f=0
% value of aliased FRF at f=fs/2

% modulus
% theoretical FRF

% FRF from DFT

% theoretical aliased FRF

% value of HT1 at f=0
% value of HH at f=0

% phase
% theoretical FRF

% FRF from DFT

% theoretical aliased FRF

(Continued)
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MATLAB Example 4.2 (Continued)

Results
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Comments

1. An exercise for the reader is to explore what happens to the calculated FRF when the
damping and mass are changed.

2. An exercise for the reader is to explore what happens when the time T is reduced so that
the IRF is truncated.

4.2.3 Accelerance

The accelerance FRF is the Fourier transform of the acceleration IRF discussed in Chapter 2.
Acceleration is probably the most frequently measured quantity in vibration measurements
because the sensors are inertial and are generally small. The acceleration IRF, however, is more
complicated than the displacement and velocity IRFs, because it involves a scaled delta function
in addition to the oscillatory part, so that ḧ(t) = 𝛿(t)

m
− 𝜔2

n
m𝜔d

e−𝜁𝜔nt sin(𝜔dt + 𝜙) for t ≥ 0, where

𝜙 = sin−1(2𝜁
√

1 − 𝜁2) (Iwanaga et al., 2021). The accelerance FRF is determined by calculating
the Fourier transform of ḧ(t) to give Hacc(j𝜔) = −𝜔2/(k−𝜔2m+ j𝜔c), for − ∞ <𝜔<∞, which has
a simple form. When the acceleration IRF is sampled there are effectively three components, as
shown in Figure 4.5, which are summed to give the effective sampled IRF. The first component is
the approximation to the scaled delta function, which occurs due to sampling. The delta function is
approximated by a triangle with the three samples, at t = 0, and t = ±Δt, as shown in the close-up
in Figure 4.5. The sample at t = −Δt is because of the assumed periodicity of the IRF during
Fourier transformation, as discussed for the velocity IRF. The area of the triangle is 1/m so that the
apex of the triangle is at 1/(mΔt). The representation of the sampled version of the delta function is
given by

ḧd(t) =
1

m(Δt)2 t + 1
mΔt

− Δt ≤ t ≤ 0

= − 1
m(Δt)2 t + 1

mΔt
0 ≤ t ≤ Δt. (4.18a)
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the delta function

h(t)

Figure 4.5 Acceleration IRF of an SDOF system. The inset shows the details of sampling at the start of the
IRF, close to t = 0.

The second component is the oscillatory term given by

ḧo(t) = −
𝜔2

n

m𝜔d
e−𝜁𝜔nt sin(𝜔dt + 𝜙). (4.18b)

Note that ḧo(0) ≠ 0 because of the damping in the system. It has a value of ḧo(0) = −2𝜁𝜔n∕m. As
this is not zero, there is an additional component, which is shown in the close-up in Figure 4.5. The
reason for this additional component is the same as that for the velocity IRF, and is given by

ḧa(t) = −
(2𝜁𝜔n

mΔt
t +

2𝜁𝜔n

m

)
− Δt ≤ t ≤ 0. (4.18c)

The effective acceleration IRF due to sampling is the sum of Eqs. (4.18a), (4.18b), and (4.18c), i.e.

ḧM(t) = ḧd(t) + ḧo(t) + ḧa(t). (4.19)

The Fourier transform of ḧM(t) is equal to {ḧd(t)} + {ḧa(t)} + {ḧo(t)}, where the {ḧd(t)} is
given by

Hd(j𝜔) =
1
m
(sinc(fΔt))2, (4.20)

the {ḧa(t)} is given by

Ha(j𝜔) =
−j2𝜁𝜔n

𝜔m
(1 − ej𝜔Δt∕2sinc(fΔt)), (4.21)

and the {ḧo(t)} is given by

Ho(j𝜔) =
−𝜔2

k − 𝜔2m + j𝜔c
− 1

m
. (4.22)

Note that the DFT(ḧ(t))∕fs is the same as the aliased frequency domain sampled version of
{ḧM(t)}.

The value of the DFT(̈h(t))∕fs at f = 0
The value of the DFT(ḧ(t))∕fs at zero frequency is the sum of Hd(0)+Ha(0)+Ho(0) plus all of their
aliases, which occur at frequencies of f = nf s for integer values of n between −∞ and ∞. Following
the procedure for the mobility FRF, it is given by

DFT(ḧ(t))
fs

|||||f=0
= Hd(0) + 2

∞∑
n=1

Re{Hd(nfs)} + Ha(0) + 2
∞∑

n=1
Re{Ha(nfs)}

+ Ho(0) + 2
∞∑

n=1
Re{Ho(nfs)}. (4.23)
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Examining Eq. (4.20), it can be seen that Hd(0) = 1/m, and because, sinc(nf sΔt) = sinc(n) = 0 for
n≠ 0, there are no aliases of this component. Similarly, there are no aliases for Ha(nf s), but it has a
value of Ha(0) =

−2𝜋𝜁
m

fn
fs

.
Now, the value of Ho(0) = − 1/m, and the aliased components can be determined in a similar

manner as for receptance and mobility. The FRF of the oscillatory component at frequency nf s is
given by

Ho(nfs) =
−(2n𝜋fs)2

k − (2n𝜋fs)2m + j2n𝜋fsc
− 1

m
. (4.24)

Assuming that f s ≫ f n, and after some algebraic manipulation, Eq. (4.24) becomes

Ho(nfs) ≈
1
m

[( fn

fs

)2

(1 − 4𝜁2) 1
n2 + j2𝜁

( fn

fs

)(
1 + 2

( fn

fs

)2 1
n2

)
1
n

]
, (4.25)

which results in 2
∑∞

n=1 Re{Ho(nfs)} ≈ 2
m

[(
fn
fs

)2
(1 − 4𝜁2)

]∑∞
n=1

1
n2 . Noting that

∑∞
n=1

1
n2 = 𝜋2

6
, and

assuming that damping is small so that 4𝜁2 can be neglected, then 2
∑∞

n=1 Re{Ho(nfs)} ≈ 𝜋2

3m

(
fn
fs

)2
.

Substituting for the component parts into Eq. (4.23) results in

|DFT(ḧ(t))|
fs

|||||f=0
≈ 𝜋

m
fn

fs

(
𝜋

3
fn

fs
− 2𝜁

)
, (4.26)

which means that at frequency f = 0, the value of the DFT of the sampled IRF is partly due to the
oscillatory component and partly due to the artefact added to oscillatory component because of
sampling.

The value of the DFT(̈h(t))∕fs at f = f s/2
The value of the DFT(ḣ(t))∕fs at f = f s/2 is determined in a similar way to that for f = 0. It is
given by

|DFT(ḧ(t))|
fs

|||||f=fs∕2
= 2

∞∑
n=1

Re{Hd((n − 1∕2)fs)} + 2
∞∑

n=1
Re{Ha((n − 1∕2)fs)}

+ 2
∞∑

n=1
Re{Ho((n − 1∕2)fs)}. (4.27)

First, consider the term related to the approximation to the delta function, given by Eq. (4.20). At
a frequency f = (n− 1/2)f s, this becomes

Hd((n − 1∕2)fs) =
1
m
(sinc((n − 1∕2)fsΔt))2, (4.28)

which can be written as Hd((n − 1∕2)fs) =
1
m
(sinc(n − 1∕2))2, so that 2

∑∞
n=1 Re{Hd((n − 1∕2)fs)} =

2
m

∑∞
n=1 (sinc(n − 1∕2))2. Now, as

∑∞
n=1 (sinc(n − 1∕2))2 = 1∕2 (Abramowitz and Stegun, 2014),

then

2
∞∑

n=1
Re{Hd((n − 1∕2)fs)} = 1

m
. (4.29)

Now consider the term related to Ha(j𝜔) given by Eq. (4.21). At a frequency of f = (n− 1/2)f s,
this becomes

Ha((n − 1∕2)fs) =
−j2𝜁𝜔n

2𝜋(n − 1∕2)fsm
(
1 − ej𝜋(n−1∕2)fsΔtsinc((n − 1∕2)fsΔt)

)
, (4.30)
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which can be written as Ha((n − 1∕2)fs) =
−4𝜁 fn

(2n−1)fsm

(
2

(2n−1)𝜋
+ j

)
, so that 2

∑∞
n=1 Re{Ha((n −

1∕2)fs)} = −16𝜁 fn
𝜋mfs

∑∞
n=1

1
(2n−1)2

. As noted previously,
∑∞

n=1
1

(2n−1)2
= 𝜋2

8
, then

2
∞∑

n=1
Re{Ha((n − 1∕2)fs)} = −2𝜋𝜁

m
fn

fs
. (4.31)

Finally, consider the term related to Ho(j𝜔) given by Eq. (4.22). At a frequency f = (n− 1/2)f s,
this becomes

Ho((n − 1∕2)fs) =
−(2n − 1)2𝜋2f 2

s

k − ((2n − 1)𝜋fs)2m + j(2n − 1)𝜋fsc
− 1

m
. (4.32)

Assuming that f s ≫ f n, and after some algebraic manipulation, Eq. (4.32) becomes

Ho((n − 1∕2)fs) ≈
4
m

[( fn

fs

)2

(1 − 4𝜁2) 1
(2n − 1)2 + j𝜁

( fn

fs

)(
1 + 8

( fn

fs

)2 1
(2n − 1)2

)
1

(2n − 1)

]
,

(4.33)

which results in 2
∑∞

n=1 Re{Ho((n − 1∕2)fs)} ≈ 8
m

[(
fn
fs

)2
(1 − 4𝜁2)

]∑∞
n=1

1
(2n−1)2

. Again, noting that
∑∞

n=1
1

(2n−1)2
= 𝜋2

8
, and assuming that damping is small so that 4𝜁2 can be neglected, results in

2
∞∑

n=1
Re{Ho((n − 1∕2)fs)} ≈ 𝜋2

m

( fn

fs

)2

. (4.34)

Substituting for the component parts into Eq. (4.23) gives
|||||
DFT(ḧ(t))

fs

|||||f=fs∕2
≈ 1

m

(
1 + 𝜋2

( fn

fs

)2

− 2𝜋𝜁
fn

fs

)
. (4.35a)

Provided that f n ≪ f s then this reduces to
|||||
DFT(ḧ(t))

fs

|||||f=fs∕2
≈ 1

m
(4.35b)

which means that at the frequency f = f s/2, the DFT(ḧ(t))∕fs
|||f=fs∕2

is approximately equal to the
value of the theoretical accelerance FRF. However, this is serendipitous because there are three
effects due to sampling and they combine to cancel each other. One of these is due to the represen-
tation of a delta function as a triangle, the second is the addition of a component due to the none
zero value of the oscillatory part of the acceleration impulse response at t = 0, and the third is due
to the aliasing of the complete acceleration impulse response, which is mainly due to the aliasing
of the representation of the delta function.

An example of the modulus and phase of the accelerance FRF, and their estimates calculated
by applying the DFT to the acceleration IRF, is shown in Figure 4.6. The differences between
the actual FRF and the estimate at f = 0 due to both sampling and aliasing are also shown in
the figure. The additional components at f = 0 can be clearly seen, as is the apparent accuracy
of the result at f = f s/2 because of the reasons discussed above. However, note that the value of
the aliased FRF at zero frequency can change sign depending on the value of damping and the
ratio of the natural frequency to the sampling frequency. For the graph shown in Figure 4.6, the
damping is such that the DC value of the aliased FRF is negative. If damping is reduced, this can
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Figure 4.6 Accelerance FRF of an SDOF system, showing the effects of sampling and aliasing on the
DFT(ḣ(t))∕fs.

become positive and the shape of the graph changes. This is illustrated in MATLAB Example 4.3.
For the graph shown in Figure 4.6, the frequency above which the DFT gives a reasonably accu-
rate estimate for the modulus of the FRF can be calculated in a similar way to that for the mobility
FRF, and is given by fn

√
𝜋fn∕fs(2𝜁 − 𝜋fn∕3fs). Examining the phase in Figure 4.6, it can be seen

that distortion due to sampling the IRF and aliasing does not have a profound effect on the phase
spectrum. As with any spectrum calculated using the DFT, the minimum frequency component
of the accelerance FRF above zero Hz is the reciprocal of the duration of the time history of the
acceleration IRF (1/T).

MATLAB Example 4.3

In this example, the effects due to sampling the acceleration IRF and aliasing on the acceler-
ance FRF of an SDOF system are examined.

clear all

%% Parameters
m = 10; % [kg]
k = 10000; % [N/m]
z = 0.01; c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-z ̂ 2)*wn; % [rad/s]
fn=sqrt(k/m)/(2*pi); % [Hz]

%% Time and frequency parameters
T=100; % [s]
fs=1000; % [Hz]

% see MATLAB example 3.1

% choose z=0.001 for low damping

% see MATLAB example 3.1

(Continued)
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MATLAB Example 4.3 (Continued)

dt=1/fs; t=0:dt:T; % [s]
df=1/T; f=0:df:fs; % [Hz]
N=length(t);

%% Theoretical accelerance IRF
ha1=1/(m*wd)*exp(-z*wn*t);
ha2=-(wd ̂ 2*sin(wd*t)+z*wn*wd*cos(wd*t));
ha3=-z*wn*(wd*cos(wd*t)-z*wn*sin(wd*t));
ha=ha1.*(ha2+ha3);
ha(1)=1/(dt*m)+ha(1); % [m/Ns ̂ 3]

%% Calculation of DFT
Ha=dt*fft(ha);

%% Theoretical FRF
dff=.001; fr=0:dff:fs; % [Hz]
w=2*pi*fr; % [rad/s]
HA=-w. ̂ 2./(k-w. ̂ 2*m+j*w*c); % [m/Ns ̂ 2]

%% Calculation of aliased response
for p=1:20;
f1=(p-1)*fs:dff:p*fs;
w1=2*pi*f1;
HP(p,:)=-w1. ̂ 2./(k-w1. ̂ 2*m+j*w1*c)-1/m;
AP1=-j*2*z*wn./(m*w1);
AP2= (1-exp(j*w1*dt/2)).*sinc(w1/(2*pi)*dt);
AP(p,:)=AP1.*AP2;
DP(p,:)=1/m*(sinc(w1/(2*pi)*dt)). ̂ 2;
f2=-p*fs:dff:-(p-1)*fs;
w2=2*pi*f2;
HM(p,:)=-w2. ̂ 2./(k-w2. ̂ 2*m+j*w2*c)-1/m;
AM1=-j*2*z*wn./(m*w2);
AM2= (1-exp(j*w2*dt/2)).*sinc(w2/(2*pi)*dt);
AM(p,:)=AM1.*AM2;
DM(p,:)=1/m*(sinc(w2/(2*pi)*dt)). ̂ 2;

end
MP=sum(HP+AP+DP);MS=sum(HM+AM+DM);
HT1=MP+MS;
HT=HT1(1:(N+1)/2);
HAA=[HT fliplr(conj(HT))];
HA1=HAA(1:length(f));
H0=(1/m*(pi ̂ 2/3*fn ̂ 2/fs ̂ 2 - 2*pi*z*fn/fs));

%% Plot the results
semilogx(fr,20*log10(abs(HA)))
hold on
semilogx(f,20*log10(abs(Ha)))
hold on
semilogx(fr,20*log10(abs(HT1)))
plot(df,20*log10(abs((2*pi*df) ̂ 2/k)),'o')
plot(df,20*log10(abs(H0)),'o')
axis([df,fs/2,-140,20])
xlabel('frequency (Hz)');
ylabel('|accelerance| (dB ref 1 m/Ns ̂ 2)');
grid; axis square;

% IRF

% addition of a delta function
and oscillatory term

% calculation of accelerance FRF

% see Matlab example 3.1

% frequency vector

% aliased FRF for +ve freq.

% aliased additional component
% aliased FRF of delta function
% frequency vector

% aliased FRF for -ve freq.

% aliased additional component
% aliased FRF of delta function

% sum all aliases
% total aliased FRF

% double sided spectrum

% value of aliased FRF at f=0

% modulus
% theoretical FRF

% FRF from DFT

% theoretical aliased FRF
% value of HT1 at f=df
% value of FRF at f=df

(Continued)
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MATLAB Example 4.3 (Continued)

Results
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Comments

1. An exercise for the reader is to explore what happens to the calculated FRF when the mass
and stiffness are changed.

2. An exercise for the reader is to explore what happens when the time T is reduced so that
the IRF is truncated.

3. An exercise for the reader is to plot the non-aliased version of the FT of the sampled IRFs
using the sum of Eqs. (4.20)–(4.22) and compare this with the theoretical accelerance FRF.

4.3 Effect of Data Truncation

It was shown in Chapter 2 that when an SDOF system is subject to an impact, the time that it
takes for the ensuing vibration to decay to a negligibly small level, depends on the force applied
and the system properties. This is the case for displacement, velocity, or acceleration. It is possible
that the ‘tail’ of the vibration response may not be captured correctly from either experimental data
or numerical simulations, especially for lightly damped systems. This can have a profound effect
when the time domain data are transformed to the frequency domain. As the transformation is
generally carried out on sampled data, this effect combines with the effects due to sampling, which
were discussed in Section 4.2. For clarity, a continuous time series is first considered in this section
to illustrate the effects of data truncation alone.

An IRF is captured over a finite time period, so it can be thought of as a time history multiplied
by a rectangular window of unit amplitude, such as that shown at the top of Figure 4.7. If the time
duration of the window is sufficiently long so that the whole of the IRF is captured, then there is no
data truncation. However, if the time duration T is too short, which is clearly the case in Figure 4.7,
the IRF is truncated to give hT(t) which is different to the actual IRF h(t). They are related by

hT(t) = w(t) × h(t) (4.36)
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Figure 4.7 Illustration of the effects of data truncation.

To determine the effect on frequency domain data, the FTs of each component of Eq. (4.36) are
calculated to give

HT(f ) = W(f ) ∗ H(f ), (4.37a)

where HT(f )=  {hT(t)}, W(f )=  {w(t)}, H(f )=  {h(t)}, and * denotes convolution, which is
defined by

HT(f ) =
∫

∞

−∞
W(f )H(f − g)dg. (4.37b)

The concept of convolution is described in detail in Appendix G. Note that because the window
and the IRF are multiplied together in the time domain, their Fourier transforms are convolved in
the frequency domain, as discussed in Appendix G (multiplication in one domain becomes convo-
lution in the other domain). The Fourier transform of the IRF is simply the corresponding FRF, and
in the example considered here, it is the receptance given by H(f ), and the FT of the rectangular
window is given by Shin and Hammond (2008)

W(f ) = T
sin(𝜋fT)
𝜋fT

e−j𝜋fT, (4.38)

which is a sinc function that also has phase because the window w(t) is not centred about t = 0.
Equation (4.38) is plotted in the left-hand column of Figure 4.7. It can be seen that the peak of the
main lobe has a value of T, and the modulus is zero when f = ±n/T, n = 1, 2, 3…. Note that if
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T →∞, W(f )→ 𝛿(f ). If this is substituted into Eq. (4.37b), then using the sifting properties of the
delta function described in Appendix E, it is found that HT(f )|T →∞ = H(f ). When data truncation
occurs, however, as shown in Figure 4.7, then ripples appear in both the amplitude and phase of
the FRF, which is evident in the third column of the figure. The ripple has a period of 1/T, and is
clearly caused by the window, as it follows the ripple pattern in W(f ).

If sampled data are truncated there are further considerations. There is, of course, the problem
of aliasing discussed in Section 4.2, but there is also an issue with frequency resolution Δf , which
is related to the duration of the time window T, by Δf = 1/T. To illustrate this effect, three cases
are considered using the displacement IRF of an SDOF system. These cases are shown in the upper
left part of Figure 4.8 and are compared in the frequency domain with the actual modulus of the

log H( f )

(c) Aliased and truncated, Δf = 1/TT

(b) Aliased and truncated, Δf = 1/T

(a) Aliased, Δf = 1/T

Actual

f

Large window – no data truncation(a)

(b)

(c)

Large window – data truncation

Modulus of the FT of the window

Small window – data truncation

Δf = 

Δf = 
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1
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Figure 4.8 Illustration of the effects of data truncation on the displacement FRF of an SDOF system,
calculated using the DFT.
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theoretical FRF in the lower part of Figure 4.8. The first case, labelled (a), is where the window is
long enough to capture the whole of the IRF. In this case the difference between the FRF calculated
using the DFT and the actual FRF is only due to aliasing. In case (b) the IRF is truncated at time TT ,
but the frequency resolution is maintained by keeping the overall window duration to time T by
setting each data point between time TT and T to zero (this is sometimes called zero-padding). The
resulting FRF is the rippled response in the lower part of Figure 4.8. This plot should be compared
with the FRF of truncated data in Figure 4.7, in which the ripples are clearly attributed to the rect-
angular window. However, it should be noted that the plot in Figure 4.8 also contains additional
components due to aliasing. In the final case, labelled (c), the IRF is also truncated, but now the
frequency resolution Δf = 1/TT is significantly reduced as TT ≪T. This means that there are no
ripples in the FRF, which occurs because the frequency resolution is also the period of the ripple,
and this is 1/T as discussed above. Note that this response also contains aliased components. The
modulus of the rectangular window spectrum is shown in the right-hand part of Figure 4.8 to fur-
ther clarify why there are no ripples in the truncated spectrum of the IRF calculated using the DFT.
It is clear from this figure, in which the data points for the window function with time duration TT
are shown as solid circles, that this is due to the limited frequency resolution because of the short
duration window.

It is evident from the example given in Figure 4.8 that care must be taken in the interpretation
and analysis of sampled data in the frequency domain. This is because the process of capturing the
data and transforming it from the time to the frequency domain using the DFT can cause significant
distortion, particularly due to aliasing and data truncation.

MATLAB Example 4.4

In this example, the convolution of a sinc function and the FRF of an SDOF system is illustrated
by way of an animation.

clear all

%% Parameters
m = 10; % [kg]
k = 10000; % [N/m]
z = 0.1; c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-z ̂ 2)*wn; % [rad/s]

%% Time and frequency parameters
T=0.1; % [s]
fs=400; df=1; % [Hz]
dt=1/fs; t=0:dt:T; % [s]

%% Theoretical IRF
h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]

%% plot IRF
plot(t,h,'k','linewidth',4)
set(gca,'fontsize',24)
xlabel('time (s)');
ylabel('displacement IRF (m/Ns)');

% see MATLAB example 3.1

% see MATLAB example 3.1
% time duration of data (window)

% IRF

(Continued)
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MATLAB Example 4.4 (Continued)

%% Theoretical FRF and sinc function
f=-fs/2:df:fs/2; % [Hz]
w=2*pi*f; % [rad/s]
H=1./(k-w. ̂ 2*m+j*w*c); % [m/N]
fr=-1.5*fs/2:df:1.5*fs/2;
W=T*sinc(T*fr).*exp(-j*pi*fr*T); % [s]
delta=sinc(fr).*exp(-j*pi*fr); % [s]

%% Convolve sinc function with FRF
C=conv(W,H)*df; Ca=conv(delta,H)*df;

% Plots
fmin=3*min(f);fmax=3*max(f);
Wf=fliplr(W);ff=fliplr(-fr);
ff = ff + ( min(f)-max(ff) );
fc = [ff f(2:end)]; fc = fc+max(fr);
set(figure,'Position',[40, 40, 1450, 700]);
subplot(2,1,1);
HN=abs(H)/max(abs(H)); WN=abs(W)/max(abs(W));
p=plot(f,HN,'k','linewidth',4);hold on
gr=[.6 .6 .6];
q=plot(fr,WN,'k','linewidth',4,'Color',gr);
axis([fmin,fmax,0,1.1])
set(gca,'fontname','arial','fontsize',12)
xlabel('frequency (Hz)');
ylabel('normalised modulus');

sl=line([min(f) min(f)],[1.1 1.1],'color','k');
hold on; grid on;
sg = rectangle('Position',[min(f) 1 0 0],...

'FaceColor', [.9 .9 .9]);
subplot(2,1,2);
CdB=20*log10(abs(C)); CadB=20*log10(abs(Ca));
r=plot(fc,CdB,'linewidth',3,'color',gr); hold on;
s = plot(fc,CadB,'k','linewidth',4);
grid on; hold on
axis([fmin,fmax,-140,max(CdB)+10]);
set(gca,'fontname', 'arial','fontsize',12);
xlabel('frequency (Hz)');
ylabel('modulus (dB ref 1N/m)');

%% animation block
for n=1:length(fc)

pause(0);
ff=ff+df;
set(q,'XData',ff,'YData',WN);

sx=min(max(ff(1),min(f)),max(f));
sxa = [sx sx];
set(sl,'XData',sxa);

ex=min(ff(end),max(f));
exa=[ex ex];
set(sl,'XData',exa);

% frequency vector

% FRF

% sinc function
% approx. delta function

% with and without truncation

% set freq. range for graph
% flip the sinc function
% slide range of W
% range of convolved function
% set the position of animation

% normalized FRF and W
% plot of normalized FRF
% define grey colour
% plot of normalized W

% vertical line for overlap

% shaded region

% convolved values in dB
% plot of convolved solution
% as above no truncation

% controls animation speed

% left-hand boundary of overlap

% right-hand boundary of overlap

(Continued)



�

� �

�

82 4 Numerical Computation of the FRFs and IRFs of an SDOF System

MATLAB Example 4.4 (Continued)

rpos = [sx 0 max(0.0001,ex-sx) 1.1];
set(sg,'Position',rpos);
uistack(sg,'bottom');

set(r,'XData',fc(1:n),'YData',CdB(1:n));
set(s,'XData',fc(1:n),'YData',CadB(1:n));

end

% shading of overlap region

% plot of convolved function
% as above no truncation

Results
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Comments

1. An exercise for the reader is to explore what happens when the duration of the time window
is changed.
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MATLAB Example 4.5

In this example, the effect of truncating an IRF on the FRF of an SDOF system calculated using
the DFT is illustrated.

clear all

%% Parameters
m = 10; % [kg]
k = 10000; % [N/m]
z = 0.1; c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-zˆ2)*wn; % [rad/s]

%% Time and frequency parameters
fs=400; % [Hz]
Th=1;dt=1/fs; t=0:dt:Th; % [s]
df=1/Th; f=0:df:fs; % [Hz]
Tw=.2; tw=0:dt:Tw; % [s]
dfw=1/Tw; fw=0:dfw:fs; % [Hz]

%% Theoretical IRFs
h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]
ht=1/(m*wd)*exp(-z*wn*tw).*sin(wd*tw); % [m/Ns]
w=[ones(1,length(tw)) zeros(1,(length(t)...

-(length(tw))))];
hw=h.*w;

%% Plot IRFs
plot(t,h,'k','linewidth',4)
xlabel('time (s)');
ylabel('displacement IRF (m/Ns)');
grid;axis square

%% Calculate DFTs of IRFs
H=dt*fft(h);
HTT=dt*fft(ht);
HW=dt*fft(hw);

%% Theoretical FRF
dff=0.1; fr=0:dff:fs/2; % [Hz]
w=2*pi*fr; % [rad/s]
HH=1./(k-w.ˆ2*m+j*w*c); % [m/N]

% Plots of FRFs
figure
plot(f,20*log10(abs(HW)))
hold on
plot(fr,20*log10(abs(HH)))
hold on
plot(f,20*log10(abs(H)))
hold on
plot(fw,20*log10(abs(HTT)))
xlabel('frequency (Hz)');
ylabel('|receptance| (dB ref 1 m/N)');
axis([0 fs/2 -130 -60])

% see MATLAB example 3.1

% see MATLAB example 3.1

% IRF long window
% IRF short window
% long window

% truncated IRF

% Plot IRF - change the parame-
ters to plot the three figures

% DFT - no truncation
% DFT - truncation, short window
% DFT - truncation, long window

% modulus

(Continued)
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MATLAB Example 4.5 (Continued)

figure
plot(f,180/pi*unwrap(angle(HW)))
hold on
plot(fr,180/pi*unwrap(angle(HH)))
hold on
plot(f,180/pi*unwrap(angle(H)))
hold on
plot(fw,180/pi*unwrap(angle(HTT)))
xlabel('frequency (Hz)');
ylabel('phase (ˆo)');
grid;axis square
axis([0 fs/2 -250 0])

% phase

Results
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Comments

1. Compare your results with Figure 4.8.
2. An exercise for the reader is to explore what happens when the length of the short duration

time window is changed.
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4.4 Effects of Sampling on the IRFs Calculated Using the IDFT

In Section 4.2, the effects of sampling on the FRF calculated using the DFT were discussed, and in
Section 4.3 the additional effect due to data truncation was discussed. Both of these effects are also
important when calculating the IRF from the FRF using the IDFT. This process is often undertaken
when using experimental data and is illustrated for a virtual experiment in Chapter 9.

The first case considered in this section is the receptance FRF and the corresponding displace-
ment IRF. This was illustrated at the end of Chapter 3, but is discussed in more detail here. The
results are shown in Figure 4.9, in which both the modulus and phase of the FRF and the IRF are
plotted. As discussed in Chapter 3, the double-sided spectrum must first be formed from the FRF
given by H(f ) = 1/(k− (2𝜋f )2m+ j2𝜋fc), where f = kΔf , in which Δf is the frequency resolution.
Recall that the FRF in the frequency range from f s/2 to f s is formed using the complex conjugate
of the spectrum in the frequency range from 0 to f s/2 (see MATLAB Example 3.2). The magnitude
and phase of the FRF reconstructed double-sided FRF, and that calculated using the DFT of the dis-
placement are shown on the left part of Figure 4.9. The difference due to aliasing is clear. The IRFs
calculated using the IDFT are shown in the right-hand plot in Figure 4.9. The IRF calculated from
the theoretical FRF is shown as sampled data for clarity. Note that the time resolution Δt = 1/f s.
Both plots are shifted to the right, and the ‘tail’ of the IRF is moved to the beginning of the IRF,
so that the behaviour of the IRF for t< 0 can be visualised (this procedure is discussed in Chapter
3 and illustrated in Figure 3.13). A third plot is shown in the IRF graph, which is the theoretical
IRF convolved with the IFT of the rectangular window from 0 to f s/2. The windowing effect was
discussed for time domain data in Section 4.3, but when transforming from the frequency domain
to the time domain, the rectangular window is in the frequency domain, resulting in a sinc function
in the time domain. It is clear from the inset of the IRF, which shows the part close to t = 0, that
the effect of applying the window in the frequency domain is to cause two artefacts in the IRF. One

t

Convolution of IRF

and IFT of frequency

domain window

IDFT of reconstructed FRF

Theoretical

fs / 2 fs

f

f

log

DFT{h(t)}

h(t)

DFT{h(t)}

FRF

FRF

H ( f )

� ( f )

Reconstructed FRF

Figure 4.9 Illustration of the effects of windowing data in the frequency domain on the displacement IRF
of an SDOF system, calculated using the IDFT.
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of the artefacts is the ripples in the IRF which are due to the ripples in the sinc function, and the
second is that there is a displacement response before t = 0. This means that the system responds
before it is impacted resulting in an acausal system. Of course, this is not physically possible. It
is caused by the sinc function, which is an even function about t = 0, i.e. it has components for
t< 0, which manifest themselves in the IRF when convolved with the sinc function. This acausal
behaviour occurs for all IRFs when they are calculated from a sampled simulated or measured FRF.
The acausal effect can be minimised by increasing the sampling frequency f s. Careful examination
of the acausal part of the IRF in the inset in Figure 4.9 shows that the ripple which is evident in the
IFT of the windowed FRF does not occur in the same way in the IDFT of the windowed sampled
FRF. This is because of the limited time resolution, which is a function of the sampling frequency,
and the samples occur approximately at times when the ripples pass through zero.

The second case considered is the mobility FRF and the corresponding velocity IRF. The results
are shown in Figure 4.10, in which both the modulus and phase of the FRF and the IRF are plotted.
Similar features as in Figure 4.9 can be seen. However, the acausal effect is greater than for the dis-
placement IRF. This is because the mobility FRF has higher frequency content than the receptance,
and the window removes this in the IRF calculated using the IFT. Hence, windowing the frequency
domain data has a greater effect on the velocity IRF. Moreover, it can be seen that the acausal effect
is greater on the IRF calculated using the IDFT. This is because the samples in the IRF do not occur
at time samples where the ripple passes through zero, as can be seen in the inset in Figure 4.10.
They are shifted by a quarter of a cycle (or 90∘) because of the phase relationship between velocity
and displacement, and therefore occur at the peaks in the ripple, making the acausal effect more
prominent.

The final case considered is the accelerance FRF and the corresponding acceleration IRF. The
results are shown in Figure 4.11. Similar effects as for the velocity and displacement IRFs can
be seen, but the acausal effect is greater. This is because the accelerance contains even higher

log Hvel ( f )

DFT{h(t)}

FRF

FRF

f

f

ϕ ( f )

DFT{h(t)}

h ( t)

fs

IDFT of reconstructed FRF

Convolution of IRF

and IFT of frequency

domain window

Theoretical

t

Reconstructed FRF

fs∕2

Figure 4.10 Illustration of the effects of windowing data in the frequency domain on the velocity IRF of an
SDOF system, calculated using the IDFT.
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ϕ ( f )

DFT{h(t)}
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Figure 4.11 Illustration of the effects of windowing data in the frequency domain on the acceleration IRF
of an SDOF system, calculated using the IDFT.

frequency content than the receptance and mobility (it is constant at high frequency); thus, the win-
dowing effect in the frequency domain is much greater. The acausal effects are clear in Figure 4.11,
especially in the inset. However, it is also clear that the acausal effects are largely hidden in the
IRF calculated using the IDFT, because the samples occur approximately when the ripples pass
through zero as there is a shift a quarter of a cycle (or 90∘) between acceleration and velocity.

MATLAB Example 4.6

In this example, the effect of windowing the FRF on the IRF of an SDOF system, calculated
using the IDFT, is illustrated.

clear all

%% Parameters
m = 1; % [kg]
k = 10000; % [N/m]
z = 0.1; c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-z ̂ 2)*wn; % [rad/s]

%% Time and frequency parameters
fs=200; T=1; dt=1/fs; t=0:dt:T; % [s]
a=0.05; dtt=a*dt; tt=0:dtt:T; % [s]
ts=-T/2:dtt:T/2; % [s]
df=1/T; f=0:df:fs; % [Hz]

%% Theoretical IRFs
hdt=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]
hv1=1/(m*wd)*exp(-z*wn*t);

% see MATLAB example 3.1

% see MATLAB example 3.1

% displacement IRF

(Continued)
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MATLAB Example 4.6 (Continued)

hv2=(wd*cos(wd*t)-z*wn*sin(wd*t));
hvt=hv1.*hv2; % [m/Ns ̂ 2]
ha1=1/(m*wd)*exp(-z*wn*t);
ha2=-(wd ̂ 2*sin(wd*t)+z*wn*wd*cos(wd*t));
ha3=-z*wn*(wd*cos(wd*t)-z*wn*sin(wd*t));
hat=ha1.*(ha2+ha3);
hat(1)=1/(dt*m)+hat(1); % [m/Ns ̂ 3]

%% Calculation of DFTs
Hd=dt*fft(hdt);
Hv=dt*fft(hvt);
Ha=dt*fft(hat);

%% Theoretical FRFs
fr=0:df:fs/2; % [Hz]
w=2*pi*fr; % [rad/s]
HD=1./(k-w. ̂ 2*m+j*w*c); % [m/N]
HV=j*w.*HD; % [m/Ns]
HA=j*w.*HV; % [m/Ns ̂ 2]

%% Form double-sided spectra
Hda=[HD fliplr(conj(HD))];HDd=Hda(1:length(t));
Hva=[HV fliplr(conj(HV))];HVd=Hva(1:length(t));
Haa=[HA fliplr(conj(HA))];HAd=Haa(1:length(t));

%% inverse Fourier transforms
hdi=fs*ifft(HDd);
hvi=fs*ifft(HVd);
hai=fs*ifft(HAd);

%% calc, of convolved sinc function with IRF
W=fs*sinc(fs*ts);
hd=1/(m*wd)*exp(-z*wn*tt).*sin(wd*tt);
hdc=conv(hd,W)*dtt;hdcc=hdc(1:length(tt));
hv1=1/(m*wd)*exp(-z*wn*tt);
hv2=(wd*cos(wd*tt)-z*wn*sin(wd*tt));
hv=hv1.*hv2;
hvc=conv(hv,W)*dtt;hvcc=hvc(1:length(tt));
ha1=1/(m*wd)*exp(-z*wn*tt);
ha2=-(wd ̂ 2*sin(wd*tt) + z*wn*wd*cos(wd*tt));
ha3=-z*wn*(wd*cos(wd*tt) - z*wn*sin(wd*tt));
ha=ha1.*(ha2+ha3); ha(1)=1/(dtt*m)+ha(1);
hac=conv(ha,W)*dtt;hacc=hac(1:length(tt));

%% shifting the IRFs to see the acausality
hdcirc=circshift(hdt',100);
hdicirc=circshift(hdi',100);
hdcccirc=circshift(hdcc',(length(tt)+1)/2+100/a);
hvcirc=circshift(hvt',100);
hvicirc=circshift(hvi',100);
hvcccirc=circshift(hvcc',(length(tt)+1)/2+100/a);
hacirc=circshift(hat',100);
haicirc=circshift(hai',100);
hacccirc=circshift(hacc',(length(tt)+1)/2+100/a);

%% plot the results
figure (1)
plot(f,20*log10(abs(HDd)),'ok'),hold on

% velocity IRF

% acceleration IRF

% receptance
% mobility
% accelerance

% frequency vector

% receptance
% velocity
% accelerance

% receptance
% velocity
% accelerance

% displacement IRF
% velocity IRF
% acceleration IRF

% displacement IRF
% convolved IRF with sinc func.

% velocity
% convolved IRF with sinc func.

% acceleration
% convolved IRF with sinc func.

% receptance
% modulus

(Continued)
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MATLAB Example 4.6 (Continued)

plot(f,20*log10(abs(Hd)),'k')
axis([0,fs,-120,-60])
xlabel('frequency (Hz)');
ylabel('|receptance| (dB ref 1 m/N)');
figure (2)
plot(f,180/pi*(angle(HDd)),'ok'),hold on
plot(f,180/pi*(angle(Hd)),'k')
axis([0.1,fs,-200,200])
xlabel('frequency (Hz)');
ylabel('phase (degrees)');
figure (3)
plot(tt,hdcccirc),hold on
plot(t,hdicirc,'ok'),hold on
plot(t,hdcirc,'k')
axis([0.4,1,-0.01,0.01])
xlabel('time(s)');
ylabel('displacement IRF (m/Ns)');

figure (4)
plot(f,20*log10(abs(HVd)),'ok'),hold on
plot(f,20*log10(abs(Hv)),'k')
axis([0,fs,-70,-20])
xlabel('frequency (Hz)');
ylabel('|mobility| (dB ref 1 m/Ns)');
figure (5)
plot(f,180/pi*(angle(HVd)),'ok'),hold on
plot(f,180/pi*(angle(Hv)),'k','Linewidth',2)
axis([0,fs,-90,90])
xlabel('frequency (Hz)');
ylabel('phase (degrees)');
figure (6)
plot(tt,hvcccirc),hold on
plot(t,hvicirc,'ok'),hold on
plot(t,hvcirc,'k')
axis([0.4,1,-1,1.2])
xlabel('time(s)');
ylabel('velocity IRF (m/Ns ̂ 2)');

figure (7)
plot(f,20*log10(abs(HAd)),'ok'),hold on
plot(f,20*log10(abs(Ha)),'k')
axis([0,fs,-40,20])
xlabel('frequency (Hz)');
ylabel('|accelerance| (dB ref 1 m/Ns ̂ 2)');
figure (8)
plot(f,180/pi*(angle(HAd)),'ok'),hold on
plot(f,180/pi*unwrap(angle(Ha)),'k')
axis([0,fs,-200,200])
xlabel('frequency (Hz)');
ylabel('phase (degrees)');
figure (9)
plot(tt,hacccirc),hold on
plot(t,haicirc,'ok'),hold on
plot(t,hacirc,'k')
axis([0.4,1,-150,200])
xlabel('time(s)');
ylabel('acceleration IRF (m/Ns ̂ 3)');

% phase

% displacement IRF

% mobility
% modulus

% phase

% velocity IRF

% accelerance
% modulus

% phase

% acceleration IRF

(Continued)
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MATLAB Example 4.6 (Continued)

Results
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Comments

1. The figures are for the same parameters used in Figures 4.9, 4.10, and 4.11.
2. An exercise for the reader is to explore what happens when the sampling frequency is

changed.
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4.5 Summary

The process of sampling a signal, either in the time or frequency domain, has the effect of distorting
the transformed signal (in either the frequency or the time domain) using the DFT or the IDFT. This
has been explored in detail for the displacement, velocity, and acceleration impulse response func-
tions (IRFs) for an SDOF vibrating system. In transforming a time domain signal to the frequency
domain, the main effects are to add artefacts to the frequency domain representation signal. This
cannot be avoided in numerical simulations of vibrating systems, because continuous time models
have an infinite bandwidth, and hence have an infinite number of frequency components. When
a signal is sampled, a finite sampling frequency must be used and hence there are always aliased
components. There are also additional components if the time signal is not zero at the beginning
and the end of the time window in which the signal is sampled, which always occurs for velocity
and acceleration IRFs. The sum of these two effects at zero frequency and half the sampling fre-
quency for the receptance, mobility, and accelerance FRFs is tabulated in Table 4.1 to show how
these effects can be minimised by careful choice of the sampling frequency and consideration of
the system parameters.

The FRF can be further distorted if the ‘tail’ of the IRF is not captured correctly by having a time
window of insufficient length. This means that the calculated FRF is then effectively the actual
FRF convolved with the spectrum of the time window. This has been illustrated for a rectangular
time window, which has a spectrum described by a sinc function.

When transforming an FRF to an IRF using the IDFT, data truncation always occurs because
of a finite sampling frequency. This effectively means that the actual FRF is multiplied by a rect-
angular window in the frequency domain. As mentioned above when a rectangular window is
transformed from one domain to another, the result is a sinc function. Therefore, the transformed
IRF is effectively the actual FRF convolved with a sinc function, which results in an additional
acausal component.

Table 4.1 Effects on the FRFs of an SDOF system using the IDFT of their respective IRFs.

Frequency Signal type Receptance Mobility Accelerance

f = 0 Continuous Modulus 1
k

0 0

Phase 0∘ 90∘ 180∘
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5

Vibration Excitation

5.1 Introduction

As mentioned in Chapter 1, most vibration testing in the laboratory is carried out using
electrodynamic shakers or instrumented impact hammers. Other means of excitation can of
course be used, such as hydraulic shakers, piezoelectric actuators, pyrotechnic excitation, and
acoustic excitation (Ewins, 2000), but the details of these are not covered here. The type of device
used for vibration excitation influences the time history of the force applied to the structure. This
chapter describes two common ways of exciting a structure, namely an electrodynamic shaker and
an instrumented hammer. In particular, the signals representing typical forces generated by these
devices are examined, including their characteristics in the time and frequency domains. The aim
of the chapter is not to give detailed knowledge on how to use specific vibration excitation devices,
as this can be found in specialised texts on vibration testing, for example McConnell and Varoto
(2008) and Waters (2013). Rather, it is to introduce some specific signals used in vibration testing,
which are then used in subsequent chapters in virtual vibration experiments.

5.2 Vibration Excitation Devices

5.2.1 Electrodynamic Shaker

An example of a structure being excited by an electrodynamic shaker is shown in Figure 5.1.
The shaker is supplied with an oscillating current is(t), causing oscillatory motion of the moving
part of the shaker, which consists of the coil and the armature, as shown in the figure. The shaker
is connected to the structure through a thin rod, called a stinger, to ensure a point connection
which minimises moment excitation of the structure. Careful design of the stinger is required to
minimise its effect on vibration measurements, details of which are given in Waters (2013) and the
references therein. The force applied is measured using a force gauge placed between the stinger
and the structure. The output from the sensor and associated conditioning amplifier is a voltage
which is proportional to the force applied f e(t). Some features of excitation using electrodynamic
shakers are as follows:

● They allow a controlled force to be applied to a structure both in terms of frequency content and
force amplitude.

● The force generated by a shaker is proportional to the oscillating current supplied to the shaker.
The current is supplied by a power amplifier, which is fed by a signal generated by a computer or

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
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Figure 5.1 Vibration excitation of a structure using an electrodynamic shaker.

a signal generator. Note that some amplifiers can be operated in either voltage or current mode,
in which the output is either a constant voltage or a constant current that is independent of the
dynamics of the structure under test. If a voltage amplifier is used, the shaker movement gen-
erates a back electromotive force which causes additional damping to be added to the structure
under test. If a constant current amplifier is used then the force applied to the structure is much
less affected by the dynamics of the vibrating structure, and no additional damping is added.
More information on the types of amplifiers and their influence on vibration test results can be
found in McConnell and Varoto (2008) and Waters (2013).

● The shaker is a mass-spring-damper system, in which the stiffness is due to the suspension and
the mass is due to the moving mass, which comprises the armature, the coil, the stinger, and part
of the force gauge. This can have some effect on the vibration of the structure, and there may be
issues of shaker–structure interaction.

● The frequency range, in which a constant force can be applied to the structure, is limited. At low
frequencies this limitation is related to the maximum stroke of the shaker. In the mid-frequency
range, the force is governed by the product of the magnetic field strength, the coil length, and the
current supplied. At high frequencies the force is limited by an internal resonance of the shaker,
and hence smaller shakers generally have a higher frequency capability.

5.2.2 Instrumented Impact Hammer

Figure 5.2 shows a structure being excited by an instrumented impact hammer. In this type of
vibration test, the force gauge is not attached to the structure, but it is an integral part of the impact
hammer. The output from the sensor and associated conditioning amplifier is a voltage which is
proportional to the force applied to the structure f e(t). A hammer is normally supplied with a variety
of tips, each of which has a different stiffness that helps to control the frequency content of the
force generated. To illustrate the type of force applied to the structure by the impact hammer, the
situation shown in Figure 5.3 is considered. An elastic body of mass m, which represents the mass of
an impact hammer, impacts a rigid structure with a velocity ẋ0. There is a local strain because of the
contact stiffness k (which in practice is a combination of the tip and local stiffness of the structure).
Whilst the body is in contact with the structure it can be modelled simply by combination of m and
k, as shown in the top right part of Figure 5.3. The system has a natural frequency of 𝜔n =

√
k∕m
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Figure 5.2 Vibration excitation of a structure using an instrumented impact hammer.

and hence a natural period of Tn = 2𝜋
√

m∕k. The time that the body is in contact is half of this
period. Thus, the contact time is Tc = 𝜋

√
m∕k. The force applied to the structure (assuming no

damping) is given by f e(t) = kx where x = (ẋ0∕𝜔n) sin𝜔nt. The peak force is thus given by fpeak =
ẋ0

√
km. The idealised force time history for a force generated by an instrumented impact hammer

is illustrated in the lower left part of Figure 5.3. It can be seen that the duration of the impact is
a function of the mass of the hammer and the stiffness of the tip, and the maximum force is also
a function of these parameters, as well as the velocity of the impact. The frequency content of the
force can be determined by calculating the  { f e(t)} to give

F(j𝜔) = Tcẋ0

√
km

2𝜋 cos(𝜔Tc∕2)
𝜋2 − (𝜔Tc)2 e−j𝜔Tc∕2. (5.1)

The modulus of F(j𝜔) is shown in the lower right part of Figure 5.3. It can be seen that the
frequency content of the applied force is limited by the contact time – a shorter contact time results
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Figure 5.3 Simple model of a force applied to a structure by an instrumented impact hammer.
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in a higher frequency content. This simple analysis shows how the stiffness of the hammer tip and
the mass of the hammer influence the frequency content of the force applied with an instrumented
impact hammer. Although this type of device is very convenient for measuring FRFs, especially if
many FRFs have to be measured on a structure, it does require some skill to use correctly, and it is
difficult to control the level of force excitation.

5.3 Vibration Excitation Signals

Some typical vibration signals used for vibration testing are shown in Figure 5.4. It can be seen that
when a shaker is used, several types of signals are available for a vibration test, whereas when an
instrumented impact hammer is used then the type of signal is limited to a half-sine impulse (in
the ideal case). Although there are some other types of signals used for FRF estimation (Brandt,
2011; Waters, 2013), only the signals pictured in Figure 5.4 are considered in this book as they
are in common use, and an understanding of these signals will enable the reader to follow more
specialised texts on practical vibration testing. The time and frequency domain characteristics of
the signals are described, as is the relationship between them in the two domains.

A fundamental relationship between any signal in the time domain and its transformation to the
frequency domain is the equivalence of energy or power contained in the signal in both domains.

Single frequency
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Half-sine impulse
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Figure 5.4 Signals supplied to an electrodynamic shaker or generated by an instrumented impact hammer.
(The signals are denoted by force or displacement for convenience).



�

� �

�

5.3 Vibration Excitation Signals 97

This relationship is given by Parseval’s theorem1 (Shin and Hammond, 2008). The choice of using
power or energy depends on whether a signal is considered to act over all time, i.e. is persis-
tent, or whether it is a transient so that it acts over a finite time period. In Figure 5.4, the single
frequency and random excitation signals are assumed to be persistent, and the chirp signal and
the half-sine impulse are transient signals. If a signal is persistent, the total energy in the signal
increases with increasing time, so characterising this type of signal in terms of energy is not helpful
as it is unbounded. It is better to calculate its power, which is defined by

signal power = 1
T∫

T∕2

−T∕2
x2

T(t)dt, (5.2)

where xT(t) is the signal x(t) in the time period −T/2≤ t ≤T/2. This is illustrated in Figure 5.5,
which shows an arbitrary stationary displacement signal that acts for an infinite period of time.
Note that the term stationary refers to the statistical properties of the signal, i.e. its mean and vari-
ance. These should be constant for any period over which they are calculated for the signal to be
considered stationary. It should also be noted that the term signal power does not necessarily refer
to power in the physical sense, but it is defined according to Eq. (5.2), and is the mean square value
of the signal in the time domain. If the ‘windowed’ part of the time series xT(t) is transformed to
the frequency domain, Parseval’s theorem determines that

1
T∫

T∕2

−T∕2
x2

T(t)dt =
∫

∞

−∞

1
T
|XT( f )|2df , (5.3)

where XT(f ) is the Fourier transform of xT(t). On the right-hand side of Eq. (5.3) the term
1
T
|XT( f )|2 = 1

T
XT( f )X∗

T( f ) is the power spectral density (PSD) of the signal (Note that PSD is
normally defined for stochastic processes, where an averaging procedure is required. When no
averaging as carried out then it is often called the raw, or sample PSD. This is further discussed
in Section 5.3.2). Note also that PSD is a real quantity. If the measurement is displacement with
units of metres, then as discussed in Chapter 3, the unit of XT(f ) is m/Hz, so the unit of PSD, in
this case, is m2/Hz. Thus, the power in the signal, in the frequency domain, is the integral of the
PSD over all negative and positive frequencies, i.e. the area under the PSD plot.

If a signal is transient, then the total energy in the signal can be captured within a single window.
Provided that the signal is zero at each end of the window, then if the window size is increased, the
signal energy does not increase. Note, however, that the signal power would decrease if the time
period is increased because of the term 1/T. As an example, consider the half-sine impulse signal
shown in Figure 5.4. Provided that the pulse is captured by the window, the energy does not change

x(t)

xT (t)

t

2
T

2
T

–

Figure 5.5 A windowed section of a signal used for analysis.

1 The theorem is named after Marc-Antoine Parseval (1755–1836). Parseval stated the theorem, but did not prove it,
claiming it to be self-evident.
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Figure 5.6 Illustration of the assumption of periodicity in the time domain that occurs with Fourier
transformation to the frequency domain.

if the window length increases, but the signal power would decrease. The definition of signal energy
for a transient signal is given by

signal energy =
∫

T∕2

−T∕2
x2

T(t)dt, (5.4)

where the time duration T is of arbitrary length provided that the transient is not truncated. In this
case Parseval’s theorem means that

∫

T∕2

−T∕2
x2

T(t)dt =
∫

∞

−∞
|XT( f )|2df , (5.5)

where the term |XT( f )|2 on the right-hand side of Eq. (5.5) is called the Energy Spectral Density
(ESD), which for a displacement signal has units of (m/Hz)2, or m2s/Hz as is more commonly
found in the literature. Note that, similar to the definition of signal power, signal energy does not
necessarily refer to energy in the physical sense, but it is defined according to Eq. (5.4). When units
of m2s/Hz are used, however, it is clear how the ESD relates to the PSD, which has units of m2/Hz,
for a displacement signal.

The application of Parseval’s theorem is explored for the vibration signals shown in Figure 5.4, in
which the differences when dealing with sampled rather than continuous data are also discussed.
Note that when processing the data using the Fourier transform it is assumed that the truncated
time series xT(t) is repeated infinitely for both negative and positive time as shown in Figure 5.6.

5.3.1 Excitation at a Single Frequency

Perhaps the simplest way to excite a structure using a shaker is to use a harmonic signal, which
is described by a sine or a cosine function. This is frequently carried out in a laboratory setting to
check the test set up and to determine whether its behaviour is linear or nonlinear. A linear system
will only respond at the excitation frequency, and this is easy to check by using single-frequency
excitation and an oscilloscope, whereas a nonlinear system may respond at multiple frequencies,
which manifests itself as a distorted sine wave. Furthermore, there is an established test procedure
to measure an FRF, frequency by frequency, using a method called the stepped-sine approach.

Because a sine or cosine wave is a periodic function, it can be completely described by a single
period. However, analysis is often carried out over several periods. Such a signal is shown at the
top of Figure 5.7. Provided that the time over which such a signal is analysed, is equal to an integer
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Figure 5.7 Power spectral density of a truncated sine wave with a window of time duration T that
captures a complete number of cycles.

multiple of cycles, and the signal is given by, for example, x(t) = |X| sin(𝜔pt), in which |X| is the
amplitude, the mean square value of a signal is given by

x2
mean = 1

T∫

T∕2

−T∕2
x2(t)dt = 1

T∫

T∕2

−T∕2
(|X| sin(𝜔pt))2dt = |X|2

2
. (5.6)

The root mean square (rms) value of the signal is determined by simply taking the square root
of Eq. (5.6) to give xrms =

√
x2

mean = |X|∕
√

2. To calculate the PSD, the FT is required, and this
results in some complications due to the finite duration of the window. First consider the idealised
situation when the window tends to infinity, then the PSD is given by 1

T
|XT(f )|2 = 1

T
XT(f )X∗

T(f ),
where T →∞ and

X(f ) =
∫

∞

−∞
x(t)e−j2𝜋ftdt. (5.7)

Substituting for x(t) = |X| sin(𝜔pt), and noting that sin(𝜔pt) =
(

ej2𝜋fpt − e−j2𝜋fpt)∕j2, Eq. (5.7)
evaluates to

X(f ) = |X|
j2

[𝛿(f − fp) − 𝛿(f + fp)], for −∞ < f < ∞. (5.8)

Thus, the PSD = [𝛿(f − fp) + 𝛿(f + fp)]|X|2∕4, which is plotted in the bottom part of Figure 5.7 as
arrows at f = ± f p. The energy, given by |X|2∕4 at frequencies ±f p, sums to give the mean square
value in Eq. (5.6).
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Now, consider the case where the FT is carried out on the windowed section of data xT(t), shown
in the top part of Figure 5.7, but now T is finite rather than infinite as discussed previously. Note that
one effect of windowing is that the effective time series is then a repetition of the sections of data
in the window as shown in the central part of Figure 5.7. If the window encompasses a complete
number of cycles of x(t), then the effective time series is the same as the actual time series. However,
this is not the case if an incomplete number of cycles are captured by the window – this is discussed
later. The finite length window also has the effect of smearing the energy in the frequency domain,
so that it is not concentrated at the excitation frequency. This windowing effect was discussed in
detail in Chapter 4. In the time domain, the data to be transformed to the frequency domain are
the product of the window and the signal. In the frequency domain, this becomes convolution of the
window and the signal. If a rectangular time domain window is used as shown in Figure 5.7, this
transforms to a sinc function in the frequency domain. Thus, the FT of xT(t) = |X| sin(𝜔pt) becomes

XT(f ) =
|X|
j2

[𝛿(f − fp) − 𝛿(f + fp)] ∗ T
sin(𝜋f T)
𝜋fT

e−j𝜋fT, for −∞ < f < ∞, (5.9a)

where ‘*’ denotes the convolution operation. Equation (5.9a) evaluates to

XT(f ) =
|X|T

j2

(
sin(𝜋( f − fp)T)
𝜋( f − fp)T

e−j𝜋( f−fp)T −
sin(𝜋( f + fp)T)
𝜋( f + fp)T

e−j𝜋( f+fp)T

)
, for −∞ < f <∞.

(5.9b)

The PSD is given by 1
T
|XT( f )|2, so that

PSD(xT(t)) =
|X|2T

4

|||||
sin(𝜋( f − fp)T)
𝜋( f − fp)T

−
sin(𝜋( f + fp)T)
𝜋( f + fp)T

e−j2𝜋fpT
|||||

2

, for −∞ < f <∞.

(5.10)

This is plotted at the bottom part of Figure 5.7. It is clear that the effect of windowing the data
in the time domain, as shown in the top part of Figure 5.7, is to cause a distribution of energy
from the excitation frequency to other frequencies, and this is described by the combination of sinc
functions. The term ‘leakage’ is the term used to describe this effect. Leakage can be reduced by
using a longer duration time window, which can be seen in the lower part of Figure 5.7, as the width
of the main lobe is 2/T. Note that the area under the PSD plot is equal to the mean square value of
the time history, and this is independent of the duration of the time window. If either the frequency
or the time window is large enough, the PSD is dominated by the main lobes in Figure 5.7, centred
around the excitation frequency at ±f p. The peaks in the PSD at ±f p are then given approximately
by |X|2T∕4. It can thus be seen, that as the time window is increased, the amplitude of the PSD at
the excitation frequency increases proportionately, and because of Parseval’s theorem, the signal
power becomes more concentrated around the excitation frequency.

Now, consider the situation where the time window does not capture an integer number of cycles,
which is shown in the top part of Figure 5.8. It is clear that the assumed signal is no longer an
actual sine wave in this case, as shown in the central part of Figure 5.8, as there are discontinuities
at each end of the time window. The mean square value of the assumed signal is no longer nec-
essarily equal to |X|2∕2. There is increased leakage of the signal to other frequencies, including a
DC component. This can be seen in the lower part of Figure 5.8. However, Parseval’s theorem still
holds, with the mean square value of the time domain signal being equal to the area under the PSD
plot. Thus, because there is increased leakage to frequencies other than the excitation frequency,
the amplitude of the PSD at ±f p is reduced.
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Figure 5.8 Power spectral density of a truncated sine wave with a window of time duration T that
captures an incomplete number of cycles.

If sampled data are considered, there are further considerations. For the excitation frequency to
coincide with a sample in the frequency domain, the excitation frequency needs to be an integer
multiple of the frequency resolution, i.e. f p/Δf must be an integer. This can be written in alternative
ways by noting that Δf = 1/(NΔt) = f s/(N). An example to illustrate the effects of sampling is given
in Figure 5.9. In the top left part of the figure, three cycles of a sine wave with a frequency of f p are
sampled with a sampling frequency of f s Hz, such that there are N samples. The PSD is calculated
both analytically and numerically using the FT to give PSD = |XT(f )|2/T1 and is plotted in the
lower left part of Figure 5.9 for the frequency range 0–f s/2. Note that the area under the PSD in
this frequency range is 50% of the mean square value of the signal, which is |X|2∕2 in this case.
As the excitation frequency f p is an integer multiple of Δf then there is a sample at f p, which can
be clearly seen in the figure. Moreover, as the other samples occur at multiples of Δf = 1/(T) in this
case, all the other samples are zero. The PSD at f p is |X|2T∕4. In the example shown in the upper
right part of Figure 5.9, two and a half cycles of the same sine wave as that in the upper left part of
the figure are captured using the same sampling frequency, so that there are P samples. The PSD is
again calculated both analytically and numerically to give PSD = |XT(f )|2/T2 and is plotted in the
lower right part of Figure 5.9 for the frequency range 0–f s/2. In this case, it is clear that because
the excitation frequency f p is not an integer multiple of Δf = 1/(PΔt) there is no sample at f p.
The samples in the PSD calculated using the DFT still coincide with the analytical curve as can
be seen in the lower right part of Figure 5.9, but they have a much smaller level than the peak of
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Figure 5.9 Power spectral densities of sampled sine waves (from 0 to f s/2).

the PSD of the continuous time signal. Furthermore, it can be seen that the other samples are no
longer zero, which means that there is significant leakage to frequencies other than the excitation
frequency (including a DC component).

MATLAB Example 5.1

In this example, the phenomenon of leakage is explored, and Parseval’s theorem is applied to
a sine wave.

clear all

%% Time and frequency parameters
fn=2; fs=40; % [Hz]
Nc=2.5; A=1; % [ ],[m]
T=Nc/fn; dt=1/fs; t=0:dt:T-1/fs; % [s]
N=length(t);
TT=N*dt; % [s]

%% Sine wave
x = A*sin(2*pi*fn*t); % [m]

%% Calculation of PSD
xdft=fft(x)*dt;
psd=abs(xdft).ˆ2/TT;
df=1/TT;f=0:df:(N-1)*df;

% excitation and sampling frequencies
% no. of cycles; amplitude of signal
% time vector
% number of points

% displacement sine wave

% DFT of sine wave
% PSD of sine wave
% freq. resolution and freq. vector

(Continued)
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MATLAB Example 5.1 (Continued)

%% Pareseval’s theorem
MSV=sum((x).ˆ2)/TT*dt
PSD=2*trapz(psd(1:round(N/2+1)))*df

%% Plot the results
figure (1)
plot(t,x,'k','linewidth',2)
hold on
plot(t,x,'ok','linewidth',2,'MarkerSize',10)
xlabel('time(s)');
ylabel('displacement (m)');
grid;axis square

figure (2)
plot(f,psd,'k','linewidth',2)
hold on
plot(f,psd,'ok','linewidth',2,'MarkerSize',10)
xlim([0 fs])
xlabel('frequency (Hz)');
ylabel('PSD (mˆ2/Hz)');
grid;axis square

% mean square value
% area under the PSD plot

% time domain

% frequency domain

Results

1

Mean square value = 0.5 m2

Area under PSD = 0.5 m2

P
S

D
 (

m
2
/H

z)

Area under PSD = 0.5 m2

Note leakage
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MATLAB Example 5.1 (Continued)

Comments

1. An exercise for the reader is to explore what happens when:
(a) the sampling frequency is changed,
(b) the time period over which the analysis is conducted is changed,
(c) the frequency of excitation is changed.

5.3.2 Excitation Using a Random Signal

A common way to excite a structure during a vibration test using a shaker is to use a random, or
pseudo random signal. This type of signal is easily generated using a computer, and the signals
are relatively easy to process. As mentioned previously, this type of signal is assumed to last for all
time, so signal power rather than signal energy is of interest. In an experiment, the bandwidth of
such a signal is generally limited to the frequency range of interest using a low-pass or band-pass
filter. This can also be done in simulations using sampled data, but if a filter is not applied, then
the maximum frequency content of the random signal is limited to half of the sampling frequency.
A typical random signal, which has a time duration of Tc seconds, is shown in Figure 5.10. To cal-
culate the PSD of this signal, it is split into segments of length T and the raw PSD of each segment
is calculated. Note that in the case considered, the segments are non-overlapping. The raw PSDs
are then averaged as indicated in Figure 5.10 to give an estimate of the true PSD of the signal. This
method is called segment averaging or Welch’s method (Welch, 1967). The data are sampled (which
is not explicitly shown in Figure 5.10), and there are N points in each segment, such that there are
N data points in the estimated PSD, and if there are P segments there are NP points in the complete
time history. As in the previous case discussed, the sampling frequency is f s, the time resolution
is Δt = 1/f s, and the frequency resolution is Δf = 1/(NΔt). The actual PSD is given by Shin and
Hammond (2008)

Sxx(f ) = lim
T→∞

E
[
X∗

p (f )Xp(f )
]

T
, (5.11)

…

t

N points N points N points

TT T

DFT DFT DFT

 x (t)
 x1 (t)  x2 (t)  xP (t)

 XP ( f ) X2 ( f ) X1 ( f )

 Tc
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P

1
T

P 2

p = 1
�›

Figure 5.10 A typical random signal split into time segments for averaging purposes.
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where Xp(f ) is the Fourier transform of the time series in the p-th segment. As T is finite, only an
estimate of the PSD is possible. It is denoted as S̃xx(f ) and is given by

S̃xx(f ) =
1
P

P∑
p=1

1
T
|Xp(f )|2. (5.12)

This is only an estimate of the actual PSD Sxx(f ), so there is an error at each frequency, which can
be reduced by the averaging process. Because S̃xx(f ) is a random variable, the error is quantified by
the standard deviation 𝜎(S̃xx(f )) of the estimate. The relationship between the error and the actual
PSD for a time series consisting of P uncorrelated sections of data is given by Shin and Hammond
(2008)

𝜎(S̃xx(f ))
Sxx(f )

≈ 1√
P
. (5.13)

Equation (5.13) is plotted in dB in Figure 5.11. It can be seen that it is worthwhile to apply the
averaging procedure, but in practice there is a limit to the improvement in the estimate that can be
achieved. For example, if only a raw estimate is calculated, i.e. T = Tc, then P = 1, and the standard
deviation is the same as the estimate! The estimate is improved by 3 dB for each doubling of the
number of averages. For example, if there are 16 averages there is an improvement of 12 dB, but
this only improves by a further 3 dB if there are an additional 16 averages. This behaviour follows
the ‘law of diminishing returns’, such that beyond an acceptable level of accuracy, a very large
number of additional averages are needed to obtain a relatively small improvement in the estimate.

Previously in this book, a rectangular window has been used to extract data from a time history
before transformation into the frequency domain. As shown in Section 5.3.1, there can be abrupt
discontinuities in the data at the edge of the windowed data using this type of window, which
results in leakage in the frequency domain. To overcome this problem, many types of windows
have been proposed, each of which has different characteristics (Harris, 1978; Shin and Hammond,
2008). In this book, only one of these windows is considered, as this is used most often in vibration
testing when using random signals. This is the Hanning window, which has a smooth characteristic,
reducing to zero at each end of the window. It is given by

wHanning(t) = cos2
(
𝜋t
T

)
for − T

2
≤ t ≤ T

2
= 0 otherwise

. (5.14a)
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Figure 5.11 Effect of averaging on the variance of the estimate of the PSD.
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Figure 5.12 Rectangular and Hanning windows.

This can be contrasted with the rectangular window, which is given by

wrectangular(t) = 1 for − T
2
≤ t ≤ T

2
= 0 otherwise

. (5.14b)

These windows are plotted in the left part of Figure 5.12, where the difference between them
is obvious. A correction factor is needed for the Hanning window as there is a loss of ‘energy’
compared to the rectangular window. This is given by

scaling factor =

√√√√√√√√√
∫

T∕2

−T∕2
w2

rectangular(t)

∫

T∕2

−T∕2
w2

Hanning(t)
=
√

8
3
. (5.15)

The Fourier transforms for the two windows are given by2

WHanning( f ) = T
2

sin(𝜋f T)
𝜋f T[1 − ( f T)2]

= T
2[1 − ( f T)2]

sinc( f T) (5.16a)

and

Wrectangular( f ) = T
sin(𝜋f T)
𝜋f T

= Tsinc( f T). (5.16b)

To illustrate the different spectral shapes of the windows, the normalised amplitude for the FT
of each window is plotted in the right part of Figure 5.12. Note that the actual amplitude for the
rectangular window at f = 0 is twice that of the Hanning window. It can be seen that the main lobe
is broader for the Hanning window compared to the rectangular window, but the amplitudes of
the side lobes are much smaller. The asymptotic roll-off for these lobes is 6 dB/octave for the rect-
angular window and 18 dB/octave for the Hanning window (Shin and Hammond, 2008). Hence, if
the Hanning window is used, the ‘energy’ is much more confined to frequencies close to the actual
frequency, compared to when a rectangular window is used.

An illustration of the use of the Hanning window applied to a random signal is shown in the top
part of Figure 5.13. The smooth transition between adjacent windows is apparent. It is also clear
that the penalty paid for the smooth transition is the loss of some data. To capture the data, another
set of windows is applied as shown in the lower part of Figure 5.13. The amount of overlap between

2 sinc(fT) = sin(𝜋fT)/(𝜋fT), which is the normalised sinc function.
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…

Non-overlapping hanning windows

Overlapping hanning windows

Lost dataHanning window

Hanning window

T T

T T T

T

t

t

Tc

Tc

…

x (t)

x (t)

x1 (t) x2 (t)

x1 (t) x2 (t)

xP (t)

xP (t)

Figure 5.13 Hanning window applied to a random signal for segment averaging.

the windows can be chosen by the analyst, but in the case shown in Figure 5.13, the overlap is set
at 50% of the window length (which is commonly used in practice). Of course, this means that
some of the data appears in more than one window, so there is degree of correlation between each
overlapping window, which means that Eq. (5.13) does not strictly apply. Further details on this
can be found in Brandt (2011).

A random time signal and its PSD estimate calculated using segment averaging with a Hanning
window and 50% overlap are shown in Figure 5.14. The PSD differs from that shown for the sine
wave in two respects. The first is that it is shown on a logarithmic scale (which is the usual case for
a PSD), and the second is that it is a single-sided PSD estimate G̃xx(f ), which is given by

G̃xx(f ) = 2S̃xx(f ) f > 0

= S̃xx(f ) f = 0

= 0 f < 0

. (5.17)

Thus, the area under the single-sided PSD plot up to half the sampling frequency is approxi-
mately equal to the mean square value of the time domain signal, (xrms)2. In the example shown
in Figure 5.14, the area under the PSD is approximately a rectangle, so the average value of the
PSD is constant with frequency and is given approximately by (xrms)2/(f s/2). The effects of aver-
aging can also be seen in the lower part Figure 5.14. The PSD estimate calculated with 4 averages
is much less smooth than the PSD estimate calculated with 32 averages. Also note that for a fixed
data length of Tc seconds (see Figure 5.10 or 5.13), then as the number of averages increases, the
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Figure 5.14 Time history of a random signal and its single-sided PSD estimate.

random error reduces but the frequency resolution (related to the bias error) worsens (Shin and
Hammond, 2008).

MATLAB Example 5.2

In this example, the spectral characteristics of a random signal are investigated, as is the
trade-off between frequency resolution and random error, and Parseval’s theorem is verified
for a random signal.

clear all

%% Time and frequency parameters
fs=200; % [Hz]
T=5; dt=1/fs; t=0:dt:T; % [s]
N=length(t); A=2;

%% Random signal
x=A*randn(length(t),1); % [m]
x=x-mean(x);

%% Calculation of PSD
Na = 4;
nfft=round(N/Na);
noverlap=round(nfft/2);
psd=pwelch(x,hann(nfft),noverlap,nfft,fs);
df=1/(nfft*dt);
f=0:df:fs/2;

%% Calculation of PSD
Na = 32;
nfft=round(N/Na);
noverlap=round(nfft/2);
psd2=pwelch(x,hann(nfft),noverlap,nfft,fs);
df2=1/(nfft*dt);
f2=0:df2:fs/2;

% sampling frequency
% signal length; time res. time vector
% no. of points; amplitude of signal

% random signal
% set mean of signal to zero

% number of averages = 4
% number of points in the DFT
% number of points in the overlap
% calculation of single-sided PSD
% frequency resolution
% frequency vector

% number of averages = 32

(Continued)
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MATLAB Example 5.2 (Continued)

%% Parseval’s theorem
MSV=sum((x).ˆ2)/T*dt % mean square value

STD=sqrt(MSV);
PSD=trapz(psd2)*df2
amp=PSD/(fs/2)

%% Plot the results
figure (1)
t1=0.001:0.1:T;
plot(t,x,'linewidth',2,'Color',[.6 .6 .6])
hold on
plot(t1,STD*t1./t1,'--k','linewidth',3)
xlabel('time(s)'); ylabel('displacement (m)');
grid, axis square

figure (2)
fa=0:600;
plot(f,10*log10(psd),'Color',[.6 .6 .6])
hold on
plot(f,10*log10(psd),'o','Color',[.6 .6 .6])
hold on
plot(f2,10*log10(psd2),'k','linewidth',2)
hold on
plot(f2,10*log10(psd2),'sk','linewidth',2)
plot(fa,10*log10(fa./fa*amp),'--k')
xlabel('frequency (Hz)');
ylabel('PSD (mˆ2/Hz)');
grid; axis square

% standard deviation
% area under the PSD plot
% average value of PSD

% time domain

% frequency domain plot

Results

32 averages, �f ≈ 6.4 Hz 

4 averages, �f ≈ 0.8 Hz 
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Comments

1. An exercise for the reader is to explore what happens when:
(a) the sampling frequency is changed,
(b) the number of averages is changed,
(c) the amount of window overlap is changed,
(d) a rectangular window is used.

2. An exercise for the reader is to investigate the difference between a single-sided PSD and
a two-sided PSD.
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5.3.3 Excitation Using a Chirp or Swept Sine

A chirp signal is described by a sine function where the instantaneous frequency changes with
time. There are two ways in which a chirp signal can be used to excite a structure. One is to increase
the frequency of excitation very slowly such that the duration of the chirp signal is much greater
than the fundamental natural period of the structure. In this case the response of the structure is
quasi steady-state at any instant during the sweep. The other way is to use a fast sweep (White
and Pinnington, 1982), where the duration of the chirp signal is much less than the fundamental
natural period of the structure. In this case, the effect of the excitation is very similar to an impact
being applied to the structure. As mentioned previously, a single chirp signal is a transient signal,
so signal energy rather than power is of interest. A chirp signal, in which the frequency of excitation
increases linearly with time, is given by

x(t) = |X| sin(𝜙(t)), (5.18)

where 𝜙(t) is the instantaneous phase of the signal, given by

𝜙(t) =
(𝜔2 − 𝜔1)

2T
t2 + 𝜔1t, (5.19)
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Figure 5.15 A linear chirp and its single-sided ESD estimate.
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in which 𝜔1 = 2𝜋f 1 and 𝜔2 = 2𝜋f 2 are the starting and finishing frequencies of the sweep, respec-
tively. Note that the instantaneous frequency is given by

𝜔(t) = d𝜙(t)
dt

=
(𝜔2 − 𝜔1)

T
t + 𝜔1, (5.20)

and the rate of change of frequency is given by d𝜔(t)
dt

= (𝜔2 − 𝜔1)∕T.
A typical linear chirp signal described by Eq. (5.18) is shown in the top part of Figure 5.15. The fre-

quency increases from f 1 to f 2 over a period of T seconds. Also shown are samples of the continuous
signal sampled at a frequency of f s samples per second, such that the time resolution is Δt = 1/f s
seconds. The excitation frequency is thus increased at a rate of (f 2 − f 1)/T Hz/s, which is shown in
the central part of Figure 5.15. The single-sided ESD of the chirp signal is calculated from |X(f )|2

in a similar way to that for the single-sided PSD given in Eq. (5.17), and is plotted in the lower part
of Figure 5.15. The frequency resolution is given by 1/(NΔt), which is approximately given by 1/T.
It can be seen that the energy of the chirp signal is broadly contained within the frequencies f 1 and
f 2. An approximate value of the average amplitude of the single-sided ESD within this frequency
range can be determined by noting that the area under the two-sided ESD is equal to the mean
square value of the signal multiplied by T, i.e. |X|2T∕2 (if the chirp contains an integer number of
cycles). As this area is equal to the product of f 2 − f 1 and the amplitude of the single-sided ESD,
within this frequency range the approximate average amplitude of the single-sided ESD within this
frequency range is given by |X|2T∕[2(f2 − f1)]. This is shown in the lower part of Figure 5.15.

MATLAB Example 5.3

In this example, the spectral characteristics of a linear chirp signal are investigated and
Parseval’s theorem is verified for a chirp signal.

clear all

%% Time and frequency parameters
fs=40; % [Hz]
T = 8;dt=1/fs;t=0:dt:T; % [s]
N=length(t);A=2;
f1=1; f2=5; % [Hz]
TT=N*dt; % [s]

%% Chirp signal
a=2*pi*(f2-f1)/(2*T);b=2*pi*f1;
x=A*sin(a*t.ˆ2+b*t); % [m]

%% Calculation of ESD
X=fft(x)*dt; % [m/Hz]
esd = 2*abs(X).ˆ2; % [m2s/Hz]
df=1/TT;f=0:df:fs/2; % [Hz]
esds=2*abs(X(1:round(N/2))).ˆ2;
esds(1)=abs(X(1)).ˆ2;

%% Parseval’s theorem
e=trapz((x).ˆ2)*dt % [m2s]
E=2*trapz(esd(1:round(N/2+1)))*df % [m2s]
amp=Aˆ2*T/2/(f2-f1) % [m2s/Hz]

%% Plot the results
figure (1)
plot(t,x,'k','linewidth',2)
hold on

% sampling frequency
% chirp length; time res. time vector
% no. of points; amplitude of chirp
% upper and lower frequencies

% coefficients
% chirp signal

% DFT of chirp signal
% ESD of chirp
% freq. resolution; freq. vector
% ESD of chirp (single-sided)

% energy in the time domain
% energy in the frequency domain
% average amplitude of ESD

% time domain

(Continued)
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MATLAB Example 5.3 (Continued)

plot(t,x,'ok','linewidth',2,'MarkerSize',10)
xlabel('time(s)');
ylabel('displacement (m)');
grid;

figure (2)
plot(f,esds,'k','linewidth',2)
hold on
plot(f,esds,'ok','linewidth',2,'MarkerSize',10)
hold on
plot(f,amp*f./f,'--k','linewidth',2)
axis([0,6,0,inf]);grid
xlabel('frequency (Hz)');
ylabel('ESD (mˆ2s/Hz)');

% frequency domain

Results
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(Continued)
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MATLAB Example 5.3 (Continued)

Comments

1. An exercise for the reader is to explore what happens when:
(a) the sampling frequency is changed,
(b) the time duration of the chirp signal is changed,
(c) the frequency range of excitation is changed.

5.3.4 Excitation Using a Half-Sine Pulse

The final vibration excitation signal discussed in this chapter is the signal generated by an impact
hammer, which is idealised as a half-sine impulse as discussed in Section 5.2.2. This type of signal
is shown in Figures 5.3 and 5.4. It is a transient signal, so signal energy rather than signal power is
considered. In Figure 5.4, it can be seen that following the half-sine impulse, there is a significant
time period during which the signal is zero. This is needed, because in a vibration test the force
and the response signals should have the same time duration for subsequent frequency domain
analysis. After the half-sine pulse force has been applied to a structure using an impact hammer,
the resulting free vibration of the structure takes some time to decay away (this time is, of course,
dependent upon the amount of damping in the structure), which needs to be accounted for when
setting the overall duration of the force signal. The time history of a half-sine pulse force of duration
T1 and its sampled form is shown in the top left part of Figure 5.16, and the time history for the
half-sine pulse followed by an extended time period when the signal is zero such that the total time
duration is T2, is shown in the upper right part of Figure 5.16. The modulus of the FT of the half sine
pulse is given by Eq. (5.1), which is plotted for positive frequencies only, as the continuous line in
the lower part of Figure 5.16. Also shown in this plot are the moduli of the DFTs for the two sampled
time histories shown in the upper part of Figure 5.16. It is clear that the duration of the signal used

t t
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Figure 5.16 Time history of a half-sine pulse, and its FT and DFT (from 0 to f s/2).
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to calculate the DFT plays an important role in terms of the number of frequency points in the
spectrum. The effect of adding the extra signal (of zero values) to the half-sine pulse does not add
additional information, but it does add more frequency points. It effectively interpolates the data
between the frequency points, which occur at frequencies of integer multiples of 1/T1. The effect
is the same as zero padding a signal which is described in Shin and Hammond (2008).

The ESD of the half-sine pulse can be found in the same way as for the chirp signal described in
Section 5.3.3. This is carried out in MATLAB Example 5.4.

MATLAB Example 5.4

In this example, the ESD of a half-sine pulse is explored and Parseval’s theorem is verified for
a half-sine pulse. Also, the effect of extending the duration of the signal by adding zeros is
investigated.

clear all

%% Time and frequency parameters
fs=2000; % [Hz]
T=0.01; % [s]
dt=1/fs;t=0:dt:T-dt; % [s]
N=length(t);
TT=N*dt;

%% Half-sine pulse
x = sin(pi*t/T); % [m]

%% Extended half-sine pulse signal
Nz=5*N;
xe = [x zeros(Nz,1)']; % [m]
te = 0:dt:(length(xe)-1)*dt; % [s]
Ne=length(te);
TTe=Ne*dt;

%% Calculation of ESDs
X=fft(x)*dt; % [m/Hz]
esd=conj(X).*X; % [m2s/Hz]
df=1/TT;fx=0:df:fs/2; % [Hz]
esds=2*abs(X(1:round(N/2)+1)).ˆ2;
esds(1)=abs(X(1)).ˆ2;

Xe=fft(xe)*dt; % [m/Hz]
esde=conj(Xe).*Xe; % [m2s/Hz]
dfe=1/TTe;fxe=0:dfe:fs/2 ; % [Hz]
esdes=2*abs(Xe(1:round(Ne/2)+1)).ˆ2;
esdes(1)=abs(Xe(1)).ˆ2;

%% Theory
ft=0:1:250;w=2*pi*ft;
Xt=T*2*pi*cos(w*T/2)./(piˆ2-(w*T).ˆ2);
esdts=2*abs(Xt).ˆ2;
esdts(1)=abs(Xt(1)).ˆ2;

%% Parseval’s theorem
e=trapz(x.ˆ2)*dt % [m2s]
E1=2*trapz(esd(1:round(N/2+1)))*df % [m2s]
E2=2*trapz(esde(1:round(Ne/2+1)))*dfe % [m2s/Hz]

%% Plot the results
figure (1)
plot(te,xe,'k')
hold on

% sampling frequency
% contact time
% time resolution; time vector
% number of points

% displacement half-sine pulse

% number of zeros to add
% extended signal
% time vector for extended signal
% number of points in extended signal

% DFT of half-sine pulse
% ESD of half-sine pulse
% freq. resolution; freq. vector
% single sided ESD

% DFT of extended signal
% ESD of extended signal
% freq. resolution; freq. vector
% single sided ESD

% frequency vector
% spectrum
% ESD of half-sine pulse (single-sided)

% energy in the time domain
% energy in the frequency domain

% time domain

(Continued)
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MATLAB Example 5.4 (Continued)

plot(te,xe,'ok')
hold on
plot(t,x,'ok','MarkerFaceColor',[.1 .1 .1])
grid;xlim([0 0.06])
xlabel('time(s)');
ylabel('displacement (m)');

figure (2)
plot(ft,10*log10(abs(esdts)),'k')
hold on
plot(fx,10*log10(abs(esds)),'ok',...
'MarkerFaceColor',[.1 .1 .1])
hold on
plot(fxe,10*log10(abs(esdes)),'ok')
grid;axis([0, 250, -90, -40])
xlabel('frequency (Hz)');
ylabel('ESD (mˆ2s/Hz)');

% frequency domain

Results
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Comments

1. An exercise for the reader is to explore what happens when:
(a) the sampling frequency is changed,
(b) the contact time is changed,
(c) the time period over which the analysis is conducted is changed.
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Table 5.1 Some characteristics of excitation signals.

Persistent signals

x(t) (m) PSD (m2/Hz) Parseval’s theorem

Single frequency

t

T T ......

P segmentsxp (t)

Random excitation

S̃xx(𝜔) =
1
P

P∑
p=1

1
T
|Xp(f )|2

where
Xp(f ) =  {xp(t)}

t

T T ......

xp (t) P segments assumption of stationarity

1
T ∫

T∕2

−T∕2
x2

p(t)dt =
∫

∞

−∞
S̃xx(𝜔)df

Transient signals

x(t) (m) ESD (m2s/Hz) Parseval’s theorem

Chirp or swept sine

t

T

Half-sine pulse Exx(𝜔) = |X(f )|2

where
X(f ) =  {x(t)}

∫

T∕2

−T∕2
x2(t)dt =

∫

∞

−∞
Exx(𝜔)df

tT
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5.4 Summary

Four signals commonly used in vibration testing shown in Figure 5.4 have been discussed in this
chapter. Three of these are used to drive an electrodynamic shaker, and one is the force gener-
ated by an instrumented impact hammer. For convenience, the characteristics of the signals have
been considered using displacement signals to illustrate the units of the signals in both the time
and frequency domains. The way in which the signals are processed depends upon the type of sig-
nal, which are classified as either persistent, where they are assumed to act over infinite time, or
transient, where they act for a limited time. Of course, no signal acts for an infinite time, but the
persistent signals last for longer than the time window in which a segment of the data is trans-
formed to the frequency domain. A fundamental assumption is that the signal has the same mean
and variance in each segment – that the signal is stationary in the statistical sense. For persistent
signals the energy in the signal increases as the signal length increases, but the power is constant, so
the frequency domain quantity of power spectral density (PSD) is calculated. For a transient signal,
the signal energy is independent of the window length provided that the signal is completely cap-
tured by the window. Thus, in this case, the frequency domain quantity of energy spectral density
(ESD) is calculated. Table 5.1 summarises the way in which the four signals are processed.
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6

Determination of the Vibration Response of a System

6.1 Introduction

In Chapter 5 some common types of signals used for vibration testing were discussed. When
carrying out a real experiment, these signals would be used to excite the structure under test and
the response (displacement, velocity, or acceleration) would be measured. The force input and the
vibration response signals could then be used to determine the dynamic behaviour of the system,
and important physical parameters that influence this behaviour could be identified. In a virtual
experiment, such as that discussed in this book, the vibration response of the system has to be
determined numerically. Three ways of doing this are discussed in this chapter. They are convo-
lution, calculation of the response via transformation to the frequency domain, and numerical
integration of the equation of motion. The focus of the study is the input–output relationship for
the simple vibrating system illustrated in Figure 6.1.

6.2 Determination of the Vibration Response

6.2.1 Convolution in the Time Domain

The relationship between the displacement response of a vibrating system and the force input
(which is zero for t< 0), such as that shown in Figure 6.1, is given by Shin and Hammond (2008)

x(t) =
∫

∞

0
h(t − 𝜏)fe(𝜏)d𝜏. (6.1a)

This is called the convolution integral and is derived in Appendix G, along with an historical
discussion on the operation. An alternative way of writing Eq. (6.1a) is by

x(t) = fe(t) ∗ h(t), (6.1b)

where * denotes convolution. Note that f e(t) denotes force and has units of N, x(t) is the displace-
ment response and has units of m, and h(t) is the displacement impulse response function (IRF)
and has units of m/Ns. This is derived in Chapter 2 for an SDOF system and is given by

h(t) = 1
m𝜔d

e−𝜁𝜔nt sin(𝜔dt), (6.2)

where 𝜔n =
√

k∕m is the undamped natural frequency, 𝜁 = c/(2m𝜔n) is the viscous damping ratio,
and 𝜔d = 𝜔n

√
1 − 𝜁2 is the damped natural frequency. In practice, the output is calculated using

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
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fe (t)
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Figure 6.1 Block diagram of a simple vibrating system.

force input data that are sampled at a frequency of f s = 1/Δt, so that t = nΔt, where Δt is the
time resolution of the sampled signals. Accordingly, the IRF is also sampled, and the convolution
operation given in Eq. (6.1a) becomes

x(nΔt) =
n∑

m=0
h(nΔt − mΔt)fe(mΔt), (6.3a)

or

x(nΔt) = fe(nΔt) ∗ h(nΔt). (6.3b)

Examples of convolution are given in Appendix G, together with an animation to illustrate the
process for each time step Δt. Determination of the vibration response of the system in Figure 6.1
is illustrated in Section 6.3 for different types of excitation force.

6.2.2 Calculation of the Response via the Frequency Domain

It is possible to determine the response of a vibrating system by transforming the force input to
the frequency domain using the Fourier transform (FT), multiplying by the frequency response
function (FRF) to give the displacement response in the frequency domain before transforming
back to the time domain using the inverse Fourier transform (IFT). This is illustrated by

fe(t) x(t)
FT ↑

↓ IFT
F(j𝜔) × H(j𝜔) = X(j𝜔).

(6.4)

The vibration response is often determined in this way because it is faster than using convo-
lution in the time domain. As with convolution, calculation of the vibration response via the
frequency domain is usually carried out using sampled data. Thus, the process of transforming
to the frequency domain and back to the time domain is carried out using the DFT and the
IDFT, respectively. This brings an additional problem in which the sampled response x(nΔt),
calculated in this way, is periodic, as discussed in Chapter 3. When the response is calculated
via the frequency domain using sampled data it is called circular convolution. This is illustrated
in Figure 6.2 and is discussed in Appendix G. To avoid the issue of wrap around with circular
convolution, which is discussed in Appendix G, the vibration response should be zero at the end
of the time period over which the analysis is conducted. This ensures that there is an accurate
representation of x(nΔt), comparable with that calculated by convolution in the time domain.
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Force input Vibrating system Displacement response

x (nÊt) = fe (nÊt)*h (nÊt)

x (nÊt) = fe (nÊt)  *  h (nÊt)

X (k�f ) = F (k�f )H (k�f )

Circular convolution
IDFT

FRF 

H(k�f)
F (k�f )

fe (n�f ) IRF 

h(n�t)

DFTDFT

Convolution

Figure 6.2 Determination of the response of a vibrating system by convolution in the time domain, and by
circular convolution via the frequency domain.

To achieve this, the duration of the force time history is doubled, by adding zeros to the original
sampled time history. This is illustrated in MATLAB Example G3.

6.2.3 Numerical Integration of the Equation of Motion

If the equation of motion for the vibrating system is known, as it is for the SDOF system considered
in this chapter, the response can be determined by numerical integration of the equation of motion
for the system. This is easily carried out in MATLAB using one of the functions designed for this
purpose, for example ode45. This approach is illustrated in Appendix D using the fourth-order
Runge–Kutta method. For the SDOF system shown in Figure 6.1, the equation of motion is given by

mẍ + cẋ + kx = fe. (6.5)

This is written in terms of two first-order equations as ẋ = y and ẏ = 1
m
(fe − cẋ − kx), which can

be combined and written in vector-matrix (state-space) form as

ẋ = Ax + b, (6.6)

where A =

[
0 1

− k
m

− c
m

]
, b =

{
0
fe
m

}
, x =

{
x
y

}
. This is now in a form which can be solved

numerically for each time step Δt as described in Appendix D. Note that the vibration response
calculated using numerical integration is an approximation. The accuracy can be improved by
reducing the time step, but there may be some issues in achieving accurate results using some
numerical equation solvers. This is beyond the scope of this book, but the interested reader can
find further information in Lambert (1991) and Hairer et al. (1993).

6.3 Calculation of the Vibration Response of an SDOF System

In Chapter 5 four signals commonly used for vibration testing were considered. They are
single-frequency excitation, a chirp, random excitation, and a half-sine impulse. The response due
to a single frequency is trivial to calculate as the response is simply the amplitude of the force input
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multiplied by the FRF evaluated at the excitation frequency, to give the amplitude and relative
phase of the displacement response at that frequency. The remaining cases are considered in this
section.

6.3.1 Impulsive Force

Before discussing the remaining cases, an interesting benchmark case to consider is an impulsive
force, which is represented as a force vector in which all the elements are zero except one, which
has a finite value. In this case the response is simply the IRF of the system, delayed with respect to
the time that the force is applied, multiplied by the magnitude of the force impulse, i.e.

x(t) =
f̂e

m𝜔d
e−𝜁𝜔n(t−t0) sin(𝜔d(t − t0)) for t ≥ t0

,
= 0 t < t0

(6.7)

where the force impulse is applied at t = t0, and the time resolution is Δt so that t = nΔt. If the force
has a value of f e(max), then the magnitude of the force is simply f̂e = fe(max )Δt. The calculation of the
displacement response in the time domain using Eq. (6.7) and the response calculated via the fre-
quency domain are illustrated in Figure 6.3. Note that although the plots appear to be continuous
lines, they are, in fact, sampled data. This means that the DFT and the IDFT are used to transform
data between the time and frequency domains, which results in double-sided spectra. At each fre-
quency the data is a complex number, and are plotted in terms of modulus and phase, for ease of
interpretation. The displacement response calculated by convolution and by the frequency domain
approach give identical results. The response calculated by numerical integration of the equation
of motion is not shown. This is calculated and compared with the other approaches in MATLAB
Example 6.1a.

6.3.2 Half-sine Force Impulse

As discussed in Chapter 5, when an instrumented hammer is used to excite a structure the force
time history is approximately a half-sine pulse. It is described by

fe(t) = fe(max ) sin(𝜋t∕Tc) for 0 ≤ t < Tc
,

= 0 otherwise
(6.8)

where Tc is the time period during which the impact hammer is in contact with the structure under
test, and f e(max) is the maximum force applied. If Tc ≪Tn, where Tn = 2𝜋

√
m∕k is the natural period

of the system (which is the period corresponding to the natural frequency) then the approximate
displacement response can be calculated in the same way as for the pure impulse, i.e. x(t) ≈ f̂e ×
h(t), where f̂e = 2fe(max )Tc∕𝜋, which is the area under the half-sine force impulse. If Tc is not small
compared with Tn, the simple approach to determine the displacement response is not applicable
and the output needs to be calculated numerically using one of the three methods described in
Section 6.2. An example of the process to calculate the displacement response of an SDOF system
to a half-sine force impulse using convolution and via the frequency domain is given in Figure 6.4.
The comments concerning sampled data made for Figure 6.3 are also applicable to Figure 6.4. Note
that zeros have been added to the force time history to ensure that it has the same length as the
IRF. Although this is not necessary to determine the displacement response using convolution,
it is necessary to calculate the displacement response via the frequency domain and to compare
the two approaches. Examining the displacement response in Figure 6.4, it can be seen that the
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Figure 6.3 Calculation of the displacement response of an SDOF system excited by an impulsive force
using convolution and via the frequency domain (circular convolution).

time duration of the impulse is much longer than the natural period of the system. The response
follows the pattern of the impulse force with some additional dynamics until the end of the force
impulse, and then the mass undergoes damped free vibration. In MATLAB Example 6.1b the effect
on the displacement response of changing the system properties and the time duration of the sine
impulse is investigated. The response is also calculated by numerical integration of the equation
of motion.

6.3.3 Chirp (Swept Sine) Force Input

A signal often used to excite a structure using a shaker is a chirp. The characteristics of this signal
were discussed in Chapter 5, the force time history of which is given by

fe(t) = |F| sin
( (𝜔2 − 𝜔1)

2T
t2 + 𝜔1t

)
, (6.9)

where 𝜔1 = 2𝜋f 1 and 𝜔2 = 2𝜋f 2 are starting and finishing frequencies of the chirp, respectively,
and T is the duration of the chirp. If the frequency range is wide enough and the chirp duration
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Figure 6.4 Calculation of the displacement response of an SDOF system excited by a half-sine impulse
force using convolution, and via the frequency domain (circular convolution).

is small compared to natural period of the system, the effect of using a chirp excitation is similar
to that for impact excitation, discussed in the previous sub-sections. If the duration of the chirp is
very long compared to the natural period, the dynamic response is quite different. In this case the
effect of a slow sweep excitation is similar to that for stepped sine excitation in which the system
is excited frequency by frequency, and the system is allowed to reach steady-state between the
frequency changes.

To ensure that the response is zero at the end of the period of excitation, so that the method
of calculating the response by convolution and by the frequency domain method can be com-
pared, the duration of the IRF is doubled by adding zeros. The chirp signal can then be any
length up to the duration of the original IRF, and then zero-padded so that it has the same
time duration as the modified IRF. This ensures that there is no wraparound which distorts
the beginning of the displacement response when calculated using the frequency domain
method. Examples of how to calculate the displacement response of an SDOF system to a
slow and a fast chirp using the three methods discussed in Section 6.2 are given in MATLAB
Example 6.1c.



�

� �

�

6.3 Calculation of the Vibration Response of an SDOF System 125

6.3.4 Random Force Input

A common signal used to excite a shaker in vibration testing is a random signal with a Gaussian dis-
tribution as discussed in Chapter 5. This is easily generated in MATLAB using the randn function.
To ensure that there is no wraparound in the displacement response calculated using the frequency
domain method, both the force time history and the IRF are padded with zeros, to double their
original time duration, in the same way as described for the chirp force input. An example of how
to calculate the displacement response of an SDOF system to random excitation using the three
methods discussed in Section 6.2 is given in MATLAB Example 6.1d.

MATLAB Example 6.1

In this example, the displacement response of an SDOF system is calculated for several types of
input forces using convolution in the time domain, via the frequency domain, and by numerical
integration of the equation of motion.

clear all

%% Parameters
m=1; % [kg]
k=1000; % [N/m]
z=0.1;c=2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m);wd=sqrt(1-zˆ2)*wn; % [rad/s]
fn=wn/(2*pi); % [Hz]
Tn=1/fn; % [s]

%% Example 6.1a Impulsive force
TT=2; % [s]
fs=100; % [Hz]
dt=1/fs; t=0:dt:TT-dt; % [s]
f=zeros(1,length(t));f(12)=1; % [N]
[xc,xf,xn]=calculate(f,m,k,c,wd,wn,z,t,fs);
plots(t,f,TT,xc,xf,xn)

%% Example 6.1b. Half-sine pulse
Tc=Tn*0.5; % [s]
fs=100; % [Hz]
dt=1/fs; t=0:dt:Tc; % [s]
f = sin(pi*t/Tc); % [N]
Nz=20*length(t);
f = [f zeros(Nz,1)']; % [N]
t = 0:dt:(length(f)-1)*dt; % [s]
N=length(t);TT=N*dt;
[xc,xf,xn]=calculate(f,m,k,c,wd,wn,z,t,fs);
plots(t,f,TT,xc,xf,xn)

%% Example 6.1c. Chirp
fs=1000; % [Hz]

% slow chirp
T=60;dt=1/fs;t=0:dt:T; % [s]
f1=1;f2=10; % [Hz]
[f,t,TT]=chrp(f1,f2,t,T,dt);
[xc,xf,xn]=calculate(f,m,k,c,wd,wn,z,t,fs);
plots(t,f,TT,xc,xf,xn)

% mass
% stiffness
% damping
% (un)damped natural frequency
% natural frequency
% natural period

% time duration of force
% sampling frequency
% time vector
% force vector
% function to calculate response
% plots

% time duration of half-sine pulse
% sampling frequency
% time vector
% half-sine pulse
% number of zeros to add
% zero-padded force signal
% time vector for extended signal

% function to calculate response
% plots

% sampling frequency

% chirp duration; time vector
% upper and lower frequencies
% function to calculate chirp force
% function to calculate response
% plots

(Continued)
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MATLAB Example 6.1 (Continued)

% fast chirp
T=1.25;t=0:dt:T; % [s]
f1=1;f2=100; % [Hz]
[f,t,TT]=chrp(f1,f2,t,T,dt);
[xc,xf,xn]=calculate(f,m,k,c,wd,wn,z,t,fs);
plots(t,f,TT,xc,xf,xn)

%% Example 6.1d. Random excitation
fs=100;
T=10;dt=1/fs;t=0:dt:T;
fc = randn(1,length(t));
fc=fc-mean(fc);
f=[fc zeros(1,length(fc))];
t=0:dt:2*T+dt;
N=length(t);TT=N*dt;
[xc,xf,xn]=calculate(f,m,k,c,wd,wn,z,t,fs);
plots(t,f,TT,xc,xf,xn)

%% Functions
function[xc,xf,xn]=calculate(f,m,k,c,wd,wn,z,t,fs)
%% Impulse response
h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]
%% Convolution
xc = conv(h,f)/fs;
xc = xc(1:length(f));
%% Frequency domain method
H = fft(h)/fs;
F = fft(f)/fs;
X = H.*F;
xf = ifft(X)*fs;
%% Numerical integration
A=[0 1;-k/m -c/m];
B=[0; 1/m];
n=t;
[t,xn]=ode45(@(t,x) imp(A,B,x,f,t,n),t,[0 0]);
xn=xn(:,1);
end

function [f,t,TT] = chrp(f1,f2,t,T,dt);
a=2*pi*(f2-f1)/(2*T); b=2*pi*f1;
fc=sin(a*t.ˆ2+b*t);
f=[fc zeros(1,length(fc))];
t=0:dt:2*T+dt;
N=length(t);TT=N*dt;
end

function dxdt=imp(A,B,x,f,t,n)
f = interp1(n,f,t);
dxdt=A*x+B*f;
end

function plots(t,f,TT,xc,xf,xn)
figure
subplot(2,1,1)
plot(t,f,'-k','linewidth',3),grid
axis([0,TT,1.1*min(f),1.1*max(f)])
xlabel('time (s)');
ylabel('force (N)');

% chirp duration; time vector
% upper and lower frequencies
% function to calculate chirp force
% function to calculate response
% plots

% sampling frequency
% signal duration; time vector
% random signal
% set the mean to zero
% zero padded force signal
% time vector for extended signal

% function to calculate response
% plots

% function to calculate the response

% IRF

% displacement response
% displacement response

% FRF
% DFT of force
% DFT of displacement response
% displacement response

% system matrix
% system matrix
% dummy variable
% numerical integration using ode45
% displacement response

% function for chirp force
% coefficients
% chirp signal
% zero padded force signal
% time vector for extended signal

% used in numerical solution

% function for plots

% force input

(Continued)
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MATLAB Example 6.1 (Continued)

subplot(2,1,2)
plot(t,xc,'linewidth',3,'Color',[.7 .7 .7]),grid
hold on
plot(t,xf,'–k','linewidth',3)
hold on
plot(t,xn,'k','linewidth',1)
axis([0,TT,1.1*min(xc),1.1*max(xc)])
xlabel('time (s)');
ylabel('displacement (m)');
end

% displacement response

Results

Example 6.1a

Impulsive force input
1

0.5

F
o
rc

e 
(N

)
D

is
p
la

ce
m

en
t 

(m
)

0

2

0

–2

0 0.2

×10–4

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

Displacement response

Example 6.1b

1

0.5

F
o

rc
e 

(N
)

D
is

p
la

ce
m

en
t 

(m
)

0

1

0

–1

×10–3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

Half-sine force input

Displacement response

(Continued)



�

� �

�

128 6 Determination of the Vibration Response of a System

MATLAB Example 6.1 (Continued)

Example 6.1c
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MATLAB Example 6.1 (Continued)

Comments:

1. Exercises for the reader are to:
(a) compare the results in Figure 6.1a,b with a scaled IRF,
(b) change the duration of the half-sine force input,
(c) change the duration of the chirp force input,
(d) reduce the number of zeros added to the chirp and the random signal and observe the

effects at the beginning of the response time histories when calculated via the frequency
domain.

6.4 Summary

This chapter has shown how to calculate of the displacement response of a vibrating system due to
a force input. Three methods have been described:

(a) Convolution of the force time history and the impulse response function (IRF) of the system.
(b) Transformation of the force time history to the frequency domain and then multiplying by the

frequency response function (FRF) before transforming back to the time domain. If this is done
using sampled data, it is equivalent to circular convolution.

(c) Numerical integration of the equation of motion.

These operations are summarised for an SDOF system in Table 6.1.

Table 6.1 Some ways to calculate the output of a linear SDOF force-excited
vibrating system (t = nΔt, f = kΔf ).

Input System description Operation Output

f e(t) Impulse response function
(IRF)

h(t) = 1
m𝜔d

e−𝜁𝜔nt sin(𝜔dt)

Convolution

x(t) = f e(t) * h(t)

x(t)

Frequency response
function

H(j𝜔) = 1
k − 𝜔2m + j𝜔c

Circular convolution

fe (t)

F (kΔf ) × H (kΔf ) = X (kΔf )

x (t)

DFT IDFT

Equation of motion

mẍ(t) + cẋ(t) + kx(t) = fe(t)

Numerical integration

Runge–Kutta method
(Appendix D)
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7

Frequency Response Function (FRF) Estimation

7.1 Introduction

In Chapter 5 the signals used to excite a structure under test were discussed in terms of their
temporal and spectral characteristics. The concept of spectral density was introduced to describe the
spectral characteristics of a signal, and the way in which spectra are calculated from time domain
data was presented for both transient and persistent signals. In Chapter 6, the process of calculating
the resulting vibration from a model structure was described. Once both input and output signals
have been recorded, they can be used to determine some characteristics of the structure under test.
As mentioned in Chapter 1, this is often done by estimating the frequency response function (FRF),
and the way this is accomplished is the subject of this chapter. The procedure is described, as are
some practical issues, in particular the way in which contaminating noise either in the measured
input or output signals is dealt with. Finally, a virtual experiment concerning vibration isolation is
described, in which the stiffness and damping of the isolator are estimated from measured data. As
in previous chapters, the discussion is centred around the SDOF system shown in Figure 7.1.

7.2 Transient Excitation

Consider a structure which is excited by a transient force such as a half-sine pulse delivered by an
instrumented impact hammer, or a fast chirp delivered by an electrodynamic shaker. Provided that
the force input and the response time histories are each captured entirely within single windows,
the receptance FRF is given by

H( j𝜔) =
X( j𝜔)
F( j𝜔)

= |H( j𝜔)|ej𝜙(j𝜔), (7.1)

where F(j𝜔) and X(j𝜔) are the Fourier transforms of the force and the displacement time histories,
respectively, and |H(j𝜔)| and𝜙(j𝜔) are the modulus and phase of the FRF, respectively. To minimise
windowing effects, the force and the displacement response should be zero at the beginning and
at the end of their respective time histories. Rectangular windows should then be used. Although
Eq. (7.1) describes the FRF of the system, it is rarely calculated this way in practice. The reason
for this is that all measurements contain some noise, and there are better ways to calculate the
FRF, such that some of the noise is removed or at least attenuated. The general situation, where
noise is added to both the force and the displacement response signals, is depicted in Figure 7.2.
In this chapter, it is assumed that the noise nf (t) in the measured force signal is uncorrelated with
the noise nx(t) in the measured displacement signal, and that both noise signals are random and

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
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Figure 7.1 Block diagram of a simple vibrating system.
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Figure 7.2 Block diagram of a force-excited system with added noise in the measured force and
displacement data.

are uncorrelated with the signals f e(t) and x(t). To suppress this noise in the FRF estimate, an
averaging procedure is carried out. To achieve this, several measurements must be made, which for
an SDOF system excited by an impact hammer, typically result in the signals shown in Figure 7.3,
which depicts the situation where P measurements are made. The force time histories for each
measurement are shown in the top row, and the corresponding displacement responses are shown
in the second row. The bottom two rows of Figure 7.3 depict the FRFs in terms of the magnitude
and phase for each measurement, calculated using Eq. (7.1).

To ensure that the force signal is relatively flat over the frequency range of interest, the contact
time of the impact hammer is set to be much smaller than the natural period of the structure. The
spectrum due to a half-sine pulse is discussed in detail in Chapter 5. As the added noise is random,
it is attenuated by the averaging procedure, resulting in a ‘smoother’ FRF estimate. The FRF of a
single p-th measurement, including the measurement noise, is given by

Hmeasured,p =
(Xmeasured

Fmeasured

)

p
=
(

X + NX

F + NF

)

p
, (7.2)

where NF and NX are the Fourier transforms of the noise in the measured force and displacement
signals, respectively, as shown in Figure 7.2. Note that the frequency dependence of these quantities
(together with others) is assumed, but omitted for clarity. One way of averaging the results could
be to calculate the FRF from a single record of the measured data as given in Eq. (7.2) and then
average the FRFs for P measurements, so that

H̃ = 1
P

P∑
p=1

(
Xp + NXp

Fp + NFp

)
. (7.3)
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Figure 7.3 Individual measurements to determine the FRF of an SDOF system from transient force
excitation.

To investigate the effects of noise on the FRF estimate, it is assumed that P→∞, so
lim
P→∞

1
P

∑P
p=1(•) = E[•], in which E is the expectation operator. Thus, the averaged quantities

are written as expectations for simplicity. Therefore, H̃ = E
[

X+NX
F+NF

]
, where NF and NX are random

variables, and X and F can be considered to be constants (at each frequency), which leads to

H̃ = H × E
[

1 + NX∕X
1 + NF∕F

]
, (7.4)

where H = X/F. Letting N = E[(1+NX /X)/(1+NF/F)] and noting that H = |H|ej𝜙 and N = |N|ej𝜙N ,
Eq. (7.4) can be written as H̃ = |H|ej𝜙|N|ej𝜙N , or

H̃ = |NH|ej(𝜙+𝜙N ), (7.5)

which shows that the noise, which although is diminished by the averaging process, contaminates
both the modulus and the phase of the FRF estimate.
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7.2.1 H1 and H2 Estimators

There are two principal alternative ways to calculate the FRF. In the first, for each measurement the
ratio of the Fourier transform of the displacement to the Fourier transform of the force is formed,
and the numerator and the denominator are multiplied by the complex conjugate of the Fourier
transform of the force. The numerator and denominator are then averaged separately to give an
estimate of the FRF. This is generally called the H1 estimate1 (Bendat and Piersol, 1980, 2000), and
if measurement noise is included, is given by

H1 =
E
[
(F + NF)∗(X + NX )

]

E
[
(F + NF)∗(F + NF)

] , (7.6a)

where * denotes the complex conjugate. Equation (7.6a) expands to

H1 =
E
[
F∗X + N∗

FX + F∗NX + N∗
FNX

]

E
[
F∗F + N∗

FF + F∗NF + N∗
FNF

] . (7.6b)

Now, all the products of uncorrelated terms tend to zero as the number of averages increases,
and E[F∗X]/E[F∗F] = X/F = H. As mentioned above, it is assumed that the noise in the input
and output measured signals is uncorrelated, and this noise is also uncorrelated with the force and
displacement response signals. Noting that H = |H|ej𝜙, and applying the assumptions, Eq. (7.6b)
reduces to

H1 =
||||

H
N1

|||| ej𝜙, (7.6c)

where N1 = 1 + S̃nfnf∕Sf f , in which S̃nfnf = E
[
N∗

FNF
]
∕T is an estimate of the power spectral density

(PSD) of the noise in the force signal, and Sf f = F∗F∕T is the PSD of the force signal without added
noise; T is the time duration of a single measurement. It can be seen from Eq (7.6c) that in the
limit of an infinite number of averages, the H1 estimate is not affected (biased) by output noise.
Furthermore, only the modulus is affected by noise in the measured force signal, with the phase
being an unbiased estimate. As N1 ≥ 1, and because both S̃nfnf and Sf f are positive real quantities,
the estimate of the modulus is an underestimate. In the signal processing literature this is called a
bias error. Note that the numerator in Eq. (7.6a) divided by T is generally written as S̃fx, which is an
estimate of the cross power spectral density (CPSD) between the measured force and displacement
signals, and is analogous to the PSD, but is complex, i.e. it has both modulus and phase. In fact,
the phase of the CPSD is the same as the phase of the FRF. The process of calculating the CPSD
effectively acts as a filter, removing uncorrelated contaminating noise from both the input and the
output. The denominator S̃ff is the PSD of the measured force signal, discussed in Chapter 5, so that

H1( j𝜔) =
S̃fx( j𝜔)

S̃ff(𝜔)
. (7.6d)

The second method of calculating the FRF is similar to the first, but both the numerator and
denominator of Eq. (7.2) are now multiplied by the complex conjugate of the Fourier transform of

1 FRF estimators are generally defined in terms of power spectral densities (PSDs), which are simply scaled versions
of the energy spectral densities (ESDs) for transient signals. The scaling factor is 1/T, which is the time duration of
a single transient measurement. Note that because both numerator and denominator of an FRF estimator are scaled
by 1/T, it does not matter whether PSDs or ESDs are used. For simplicity of notation, and to provide consistency with
FRF estimation using random data, which is discussed later in this chapter, PSDs rather than ESDs are used.
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the displacement, to give

H2 =
E
[
(X + NX )∗(X + NX )

]

E
[
(X + NX )∗(F + NF)

] . (7.7a)

Note that the numerator and denominator are again averaged separately to give an FRF esti-
mate, which is generally called the H2 estimate (Bendat and Piersol, 1980, 2000). Equation (7.7a)
expands to

H2 =
E
[
X∗X + N∗

X X + X∗NX + N∗
X NX

]

E
[
X∗F + N∗

X F + X∗NF + N∗
X NF

] . (7.7b)

As with the H1 estimate, all products of uncorrelated terms tend to zero as the number of averages
increases, so that Eq. (7.7b) reduces to

H2 = |N2H|ej𝜙, (7.7c)

where N2 = 1 + S̃nxnx∕Sxx, in which S̃nxnx = E
[
N∗

X NX
]
∕T is an estimate of the PSD of the noise in

the displacement signal, and Sxx = X∗X∕T is the PSD of the displacement signal without added
noise. It can be seen from Eq. (7.7c), that in the limit of an infinite number of averages, the H2 esti-
mate is unaffected by noise in the force signal. Furthermore, the phase is not affected by noise in the
measured displacement signal, but the modulus is affected by noise in the measured displacement
signal. The estimate of the modulus is an overestimate because N2 ≥ 1. Note that the denominator
(divided by T) in Eq. (7.7a) is generally written as S̃xf, which is an estimate of the CPSD between
the measured displacement and force signals. It is the complex conjugate of S̃fx, i.e. S̃xf = S̃∗

fx, so
it has the same modulus but the phase is of opposite sign. The denominator S̃xx is the PSD of the
measured displacement signal, so that

H2( j𝜔) =
S̃xx(𝜔)
S̃xf( j𝜔)

. (7.7d)

The process of estimating an FRF using impact hammer excitation and averaging over a finite
number of measurements is illustrated in Figure 7.4. The PSDs for the measured force and dis-
placement signals are shown in the top two rows, and the corresponding modulus and phase of the
CPSDs between these signals are shown for each measurement in the bottom two rows. Also shown
at the bottom of the figure is the averaging procedure used to calculate the H1 and H2 estimators.
At the lower right part of Figure 7.4 is the coherence function. This is an extremely important func-
tion, when estimating FRFs, and is used to estimate the quality of a measurement. It is discussed
in the following subsection.

If there is noise in both the force and displacement measured data, there are other FRF estimators
that could be used (Shin and Hammond, 2008). However, they are not as simple as the H1 and H2
estimators and require some knowledge of the noise characteristics, for example the ratio of the
noise in the force and displacement spectra. As this book is an introductory text, these are not
covered here.

7.2.2 Coherence Function

The coherence function between the measured force and the measured displacement signals is
equal to the ratio of the H1 and H2 estimators (Brandt, 2011). It is thus a function of frequency and
is given by

𝛾2
fx(𝜔) =

H1( j𝜔)
H2( j𝜔)

, (7.8a)
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Figure 7.4 Process of FRF estimation of an SDOF system due to transient force excitation in the presence
of measurement noise.

where H1 is given in Eq. (7.6d) and H2 is given in Eq. (7.7d). Note that because S̃xf = S̃∗
fx the coher-

ence function is real-valued at each frequency. Moreover, it was shown above that H1 underes-
timates the modulus of the actual FRF and is insensitive to noise in the measured displacement
response, and H2 overestimates the modulus of the actual FRF and is insensitive to noise in the
measured input force. Thus, 0 ≤ 𝛾2

fx(𝜔) ≤ 1. Substituting for H1 and H2 from Eqs. (7.6d) and (7.7d)
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into Eq. (7.8a) results in the more usual expression for the coherence function given by

𝛾2
fx(𝜔) =

|S̃fx( j𝜔)|2
S̃ff(𝜔)S̃xx(𝜔)

. (7.8b)

The coherence function is a measure of the degree of linear relationship between the two mea-
sured signals at each frequency. If it is less than unity it could be due to one or more of the following
reasons:

1. Noise may be present in the force and/or the displacement signals.
2. The system being measured may have some nonlinearity. This could be the structure under test

and/or the measurement system.
3. The displacement measurement is not only due to the force input. There may be other inputs,

which manifest themselves as noise in the output signal.

It is interesting to examine the coherence function in the special cases when noise is only in the
force signal or only in the displacement response signal. In the first case, when the noise is only in
the measured force signal, from Eq. (7.6c), H1 = H∕(1 + S̃nfnf∕Sff) and H2 = H. Substituting for H1
and H2 in Eq. (7.8a) results in

𝛾2
fx(𝜔) =

1
1 + S̃nfnf(𝜔)∕Sf f (𝜔)

. (7.9)

Note that Sf f (𝜔)∕S̃nfnf(𝜔) is the signal-to-noise ratio (SNR) of the force signal at each frequency.
As the SNR tends to infinity, S̃nfnf(𝜔)∕Sf f (𝜔) → 0, and 𝛾2

fx(𝜔) → 1. When the noise is only in the
measured displacement response H1 = H and H2 = H(1 + S̃nxnx∕Sxx), so that

𝛾2
fx(𝜔) =

1
1 + S̃nxnx(𝜔)∕Sxx(𝜔)

. (7.10)

Note that in this case Sxx(𝜔)∕S̃nxnx(𝜔) is the SNR of the displacement signal at each frequency, and
as the SNR tends to infinity, the coherence tends to unity. Equations (7.9) and (7.10) have the same
form and are plotted in Figure 7.5 to show the relationship between the SNR at each frequency
and the coherence function. The SNR is plotted in dB (calculated as 10 log10(SNR(𝜔))) as this is the
more usual way of quoting an SNR, and the coherence has a value between 0 and 1, as mentioned
above. It can be seen that the coherence increases rapidly as the SNR increases and has a value
greater than 0.9 when the SNR is greater than approximately 9 dB.

7.2.3 Examples

To illustrate the effect of averaging the measured data to give a smoother FRF, the PSDs and CPSDs
shown in Figure 7.4 are considered, but with noise added. A set of P measurements is made of the
input force and the resulting displacement response of an SDOF system. The FRF is calculated for
two cases (i) when random noise is added to the force signal and (ii) when random noise is added
to the displacement response signal. The amount of random noise added to the time domain signal
(either force or displacement) is determined by specifying an overall SNR for the signal, which is
defined by

SNR (dB) = 10log10

(
signal energy
noise energy

)
. (7.11)
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Figure 7.5 Relationship between the coherence and SNR at each frequency for a system with
measurement noise in either the force or displacement data.

Recall from Chapter 5 that in the time domain the signal energy is calculated by squaring
the signal and integrating the result. In the frequency domain, this is equivalent to the prod-
uct of the PSD integrated over frequency, and the time duration for a measurement sample.
The time domain data for a single measurement with the addition of noise in the force mea-
surement are shown in the top part of Figure 7.6. The averaged PSDs and CPSDs from a set of P
measurements as shown in Figure 7.4, and are used to determine the H1 and H2 estimators. The
modulus and phase of the FRFs calculated in this way are shown in the lower part of Figure 7.6,
together with the FRFs calculated for each of the individual measurements (all samples), and the
theoretical FRF. It is clear that the averaging process significantly improves the FRF estimates,
reducing the effect of the measurement noise in both the modulus and phase. It is also clear
that, for the simulation carried out, the H2 estimator gives a better estimate of the modulus
of the FRF compared to the H1 estimator. The bias error due to the measurement noise in
the modulus of the H1 estimator is evident. There is no bias error in the phase estimate, as
discussed above. The coherence is also shown in Figure 7.6. It is about 0.9 over the frequency
range shown, which means that the force SNR is about 9 dB at each frequency. Note that this
SNR is not particularly high, and that generally it would be higher in a real experiment. A small
SNR was used in the simulation to illustrate the clear differences between the H1 and H2
estimators.

The second example concerns the SDOF system considered previously, but now with measure-
ment noise contaminating the displacement response signal instead of the measured force signal.
The results are shown in Figure 7.7, in which the random noise contaminating the displacement
signal is evident in the time domain signal. The H1 and H2 estimators are calculated in the same
way as in the previous example. Again, it is clear that the averaging process significantly improves
the FRF estimates, but it does not remove the noise completely. The added noise has a different
effect than when it is added to the force signal. This is because the displacement response is sig-
nificantly attenuated at high frequencies, above the resonance frequency of the system, and the
noise then dominates the response, because the system displacement reduces with the square of
frequency, whereas the noise has a flat spectrum. This effect is particularly evident in the coherence
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Figure 7.6 Estimates of the FRF of an SDOF system excited with a half-sine impulse which has added
noise in the measured force signal.

plot, also shown in Figure 7.7. The bias error in the H2 estimate manifests itself when the SNR is
poor, as can be seen in the figure.

An alternative way to tackling the measurement noise problem, which is sometimes used in
practice, is to apply a window to the half-sine force impulse alone, setting the remainder of the
force time history to zero, and applying an exponential window to the response. The exponential
window effectively adds damping to the system response, which can be compensated for in post
processing of the data if modal models are used as discussed in Chapter 8. These approaches are
not considered in this book, but the interested reader can consult (Brandt, 2011; Avitabile, 2017),
for further information.

Although the simulations presented so far in this chapter have involved a half-sine pulse exci-
tation, similar to that delivered by an impact hammer, the approach is applicable to any type of
transient excitation. In MATLAB Example 7.1, the FRF of an SDOF system is estimated using a
fast chirp signal as the force signal, and this is compared with the estimated FRF when a half-sine
pulse force signal is used to excite the system.
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Figure 7.7 Estimates of the FRF of an SDOF system excited with a half-sine impulse which has added
noise in the measured displacement signal. The frequency axes are logarithmic as are the moduli axes.

MATLAB Example 7.1

In this example, the FRF of an SDOF system is estimated using the H1 and H2 estimators for
half-sine pulse and chirp excitation signals with added random noise.

clear all

%% Parameters
m=1;k=10000; % [kg,N/m]
z=0.1;c=2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m);wd=sqrt(1-zˆ2)*wn; % [rad/s]
fn=wn/(2*pi);Tn=1/fn; % [Hz,s]
SNRf=20;SNRx=100;

%% Half-sine pulse
Tc=Tn*0.02;fs=5000; % [s,Hz]
dt=1/fs; t1=0:dt:Tc; % [s]
fp=sin(pi*t1/Tc); % [N]
Nz=600*length(t1);

% mass and stiffness
% damping
% natural frequency
% natural frequency/period
% SNRs for added random noise

% contact time/sampling frequency
% time vector
% half sine pulse
% Number of zeros to add

(Continued)
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MATLAB Example 7.1 (Continued)

f=[zeros(Nz/10,1)',fp zeros(Nz,1)']; % [N]
t = 0:dt:(length(f)-1)*dt;
N=length(t);TT=N*dt;Tm=max(t);
[xc]=calc(f,m,k,c,wd,wn,z,t,fs); % [m]
[fwn,xwn,Sff,Sxx,H1,H1a,H2,H2a,coh]=...
FRF(f,xc,dt,Tm,SNRf,SNRx);
Sffs=Sff;Sxxs=Sxx;H1s=H1;H1as=H1a;
H2s=H2;H2as=H2a;cohs=coh;

plots(t,fwn,TT,xwn)

%% Chirp
T=TT/2;tt=0:dt:T; % [s]
f1=1;f2=200; % [Hz]
a=2*pi*(f2-f1)/(2*T); b=2*pi*f1;
fc=sin(a*tt.ˆ2+b*tt); % [N]
f=[fc zeros(1,length(f)-length(fc))]; % [N]
[xc]=calc(f,m,k,c,wd,wn,z,t,fs); % [m]
[fwn,xwn,Sff,Sxx,H1,H1a,H2,H2a,coh]=...
FRF(f,xc,dt,Tm,SNRf,SNRx);
Sffc=Sff;Sxxc=Sxx;H1c=H1;H1ac=H1a;
H2c=H2;H2ac=H2a;cohc=coh;

plots(t,fwn,TT,xwn)

%% Theoretical FRF
df=1/(N*dt);ff=0:df:fs-df; % [Hz]
w=2*pi*ff;
Ht=1./(k-w.ˆ2*m+j*w*c); % [m/N]

%% Plots of frequency domain quantities
figure
semilogx(ff,10*log10(mean(Sffc)))
hold on
semilogx(ff,10*log10(mean(Sffs)))
axis square; grid; axis([1,1000,-80,-30])
xlabel('frequency (Hz)');
ylabel('force PSD (dB ref 1 Nˆ2/Hz)');

figure
semilogx(ff,10*log10(mean(Sxxc))); hold on
semilogx(ff,10*log10(mean(Sxxs)))
axis square; grid; axis([1,1000,-200,-80])
xlabel('frequency (Hz)');
ylabel('displ, PSD (dB ref 1 mˆ2/Hz)');

figure
semilogx(ff,20*log10(abs(H1a))); hold on
semilogx(ff,20*log10(abs(H1c))); hold on
semilogx(ff,20*log10(abs(H1s))); hold on
semilogx(ff,20*log10(abs(Ht)))
axis square; grid; axis([1,1000,-120,-60])
xlabel('frequency (Hz)');
ylabel('displ./force (dB ref 1 m/N)');

figure
semilogx(ff,20*log10(abs(H1a))); hold on
semilogx(ff,20*log10(abs(H2c))); hold on
semilogx(ff,20*log10(abs(H2s))); hold on

% zero-padded force signal
% time vector for extended signal

% function to calculate displ.
% function to calculate frequency

domain quantities
% frequency domain quantities

% function for time domain plots

% time vector
% upper and lower frequencies
% coefficients
% chirp signal
% zero padded force signal
% function to calculate displ.
% function to calculate frequency

domain quantities
% frequency domain quantities

% function for time domain plots

% frequency vector

% theoretical FRF

% plot of force PSD

% plot of displ. PSD

% plot of H1 estimator

% plot of H2 estimator

(Continued)
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MATLAB Example 7.1 (Continued)

semilogx(ff,20*log10(abs(Ht)))
axis square; grid; axis([1,1000,-120,-60])
xlabel('frequency (Hz)');
ylabel('displacement/force (dB ref 1 m/N)');

figure
semilogx(ff,180/pi*angle(H1a)); hold on
semilogx(ff,180/pi*unwrap(angle(H1c))); hold on
semilogx(ff,180/pi*unwrap(angle(H1s))); hold on
semilogx(ff,180/pi*unwrap(angle(Ht)))
axis square; grid; axis([1,1000,-200,200])
xlabel('frequency (Hz)');
ylabel('phase (degrees)');

figure
semilogx(ff,cohc,ff,cohs)
axis square; grid; axis([1,1000,0,1])
xlabel('frequency (Hz)'); ylabel('coherence');

%% Functions
function [xc]=calc(f,m,k,c,wd,wn,z,t,fs)
% Impulse response
h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t);
% Convolution
xc=conv(h,f)/fs;
xc=xc(1:length(f));
end

function[fwn,xwn,Sff,Sxx,H1,H1a,H2,H2a,coh]=...
FRF(f,xc,dt,Tm,SNRf,SNRx)
for n=1:16

fwn=awgn(f,SNRf,'measured','dB');
xwn=awgn(xc,SNRx,'measured','dB');
F=fft(fwn)*dt; % [N/Hz]
X=fft(xwn)*dt; % [m/Hz]
Sff(n,:)=F.*conj(F)/Tm; % [N2/Hz]
Sxx(n,:)=X.*conj(X)/Tm; % [m2/Hz]
Sfx(n,:)=X.*conj(F)/Tm; % [Nm/Hz]
Sxf(n,:)=F.*conj(X)/Tm; % [Nm/Hz]

end

coh=abs(mean(Sxf)).ˆ2./(mean(Sxx).*mean(Sff));
H1=mean(Sfx)./mean(Sff);H1a=Sfx./Sff; % [m/N]
H2=mean(Sxx)./mean(Sxf);H2a=Sxx./Sxf; % [m/N]
end

function plots(t,fwn,TT,xwn)
figure
subplot(2,1,1)
plot(t,fwn); grid
axis([0,TT,1.1*min(fwn),1.1*max(fwn)])
xlabel('time (s)');ylabel('force (N)');
subplot(2,1,2)
plot(t,xwn); grid
axis([0,TT,1.1*min(xwn),1.1*max(xwn)])
xlabel('time (s)');ylabel('displ. (m)');
end

% plot of phase

% plot of coherence

% calculate displacement

% IRF

% displacement response

% calculate frequency domain
properties

% add random noise
% add random noise
% fft of force
% fft of displacement
% force PSD
% displacement PSD
% CPSD fx
% CPSD xf

% coherence
% H1 estimator/all samples
% H2 estimator/all samples

% plots time domain quantities

(Continued)
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MATLAB Example 7.1 (Continued)
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MATLAB Example 7.1 (Continued)

Comments:

1. The figures show the situation when the SNR for the measured force and displacement sig-
nals are 20 and 100 dB, respectively. An exercise for the reader is to explore what happens
when the SNRs are changed for both input and output. Also explore the effects of increasing
the number of averages.

2. From the results above, it is clear that the spectra of the force excitation signals are very
different in terms of both level and frequency range, depending on the type of excitation.
An exercise for the reader is to explore the effects of changing the excitation parameters,
such as
(a) the duration of the half-sine pulse,
(b) the lower and upper frequencies for the chirp excitation, and the rate at which the

frequency is increased.

7.3 Random Excitation

As mentioned previously, a common way to excite a structure to measure an FRF is to use a shaker
supplied with random noise passed through a power amplifier. The way in which random signals
are treated in terms of estimating their spectra is given in Chapter 5, and the same approach is
followed in this section. A typical measured force input to an SDOF system, without measure-
ment noise, is shown in Figure 7.8, as is the measured displacement response. Note the difference
in the force and displacement signals. The force signal contains a wide-range of frequencies – it
has a flat spectrum up to half the sampling frequency, and the displacement response has domi-
nant low-frequency content. Close examination of the displacement response shows that there is
a periodic component, which corresponds to the natural frequency of the system. Also shown in
Figure 7.8 are Hanning windows of length T, which are used in the transformation of the data to
the frequency domain. Note, that in practice, overlapping windows are generally used, but these
are not shown in the figure to avoid clutter. The effect of using Hanning windows with 50% overlap
is discussed later. In Figure 7.8, the total time over which the data are collected is Tc, and there are
P averages. The process of estimating the FRF is similar to that discussed for transient excitation,
and is shown at the bottom of Figure 7.8, but because the signals are random and persistent, there
are leakage issues (which are minimised by using Hanning windows as discussed in Chapter 5),
bias errors, and random errors. The frequency domain quantities calculated from the time domain
data are shown in Figure 7.9. They are the spectral densities of the force and the displacement, the
magnitude and phase of the FRF and the coherence. Note that because there is no measurement
noise in this simulation, then H = H1 = H2, and the FRFs are calculated by using either the PSD
of the force input or the displacement response, and the CPSD, as with transient excitation. The
theoretical FRF is also shown in Figure 7.9 as a dashed line.

A summary of the random errors associated with each quantity is given in Table 7.1 (Shin and
Hammond, 2008). It can be seen that only the number of averages govern the error for the PSDs.
However, the coherence between the input and output is also important for the FRF (modulus
and phase) and the coherence estimators. The smaller the coherence, the larger the random error.
Note that in the derivation of the expressions for the errors in Table 7.1, it is assumed that the
data segments are mutually uncorrelated. If overlapping windows are used, then more averages
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CPSD of force and displacement
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Figure 7.8 Process of FRF estimation of an SDOF system due to random force excitation. The overlapped
Hanning windows are not shown for clarity.
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Figure 7.9 Frequency domain data resulting from processing the random data shown in Figure 7.8. The
frequency axes are logarithmic as are the axes for the PSDs and the modulus.

Table 7.1 Random errors for the various estimators.

Estimator Random error

S̃ff(𝜔) or S̃xx(𝜔)
𝜎(S̃ff(𝜔))

Sff(𝜔)
=
𝜎(S̃xx(𝜔))

Sxx(𝜔)
= 1√

P

|H̃1( j𝜔)| or |H̃2( j𝜔)| 𝜎(|H̃1( j𝜔)|)
|H1( j𝜔)| =

𝜎(|H̃2( j𝜔)|)
|H2( j𝜔)| =

√
1 − 𝛾2(𝜔)
2𝛾2(𝜔)P

�̃�( j𝜔) 𝜎(�̃�( j𝜔)) =

√
1 − 𝛾2(𝜔)
2𝛾2(𝜔)P

�̃�2(𝜔) 𝜎(�̃�2(𝜔))
𝛾2(𝜔)

= (1 − 𝛾2(𝜔))
√

2
𝛾2(𝜔)P

are needed to maintain the error at the same value. For example, if a Hanning window with 50%
overlap is used, the number of averages has to be increased by a factor of 1.89 (Brandt, 2011).

Returning to the coherence function, shown in Figure 7.9, it can be seen that there is a very
slight reduction in the value from unity at the resonance frequency. This feature is commonly
seen in the coherence function when random excitation is used. The cause of this phenomenon is
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Figure 7.10 Plots showing the effect of the window size compared to on the length of the IRF, on the FRF,
and the coherence.

illustrated in Figure 7.10. Three simulations are shown in this figure for an SDOF with three values
of damping ratio, 𝜁 = 0.001, 0.01, and 0.1. This means that the IRFs for each system have different
time durations. The IRFs are plotted together with the time histories of the corresponding displace-
ment responses to the random force input so that the time duration of the IRFs can be clearly seen.
What is important is the time duration of the IRF compared to the time length of the segment T.
Also plotted in Figure 7.10 in the top left part of the figure is the force time history for each system.
Now, the coherence is essentially a measure of how much of the displacement response in each
time segment is linearly related to the force input in that segment. For most frequencies this is fine,
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but close to the resonance frequency the response is dominated by damping, and if the damping
is light, it can be seen that the IRF takes more than one segment to decay to a very small level. In
this case, the displacement response close to the resonance frequency is due to the force input in
preceding segments as well as the current segment, and hence the coherence function is less than
unity, even though there is no extraneous measurement noise. It is clear from Figure 7.10 that if
the length of the segment T is much greater (smaller) than the duration of the IRF, then the effect
on the coherence at the resonance frequency is small (large). This bias error also manifests itself in
the FRF at frequencies close to the resonance frequency. The effect is to underestimate the ampli-
tude of the FRF close to the resonance frequency. This is most clearly seen in the Nyquist plot,
which emphasises the region around the resonance frequency compared to other frequencies. The
Nyquist plots for all three damping values are shown in Figure 7.10. The correlation between the
error in the estimate of the FRF compared to the actual FRF, and the duration of the IRF compared
to the segment length as well as the drop in the coherence can be clearly seen.

To reduce the bias error for a lightly damped system, it is evident that the window length needs
to be increased. However, for a given length of data this means that there would be fewer averages,
and hence the random error would increase in the FRF estimate, as can be seen in Table 7.1. Thus,
there is a trade-off between bias error and random error. It is clear from the above discussion that
for a lightly damped system, bias error can be a significant problem, and to maintain acceptable
levels of bias and random errors in the estimated FRF for such as system, large data segments and
hence long duration time histories of force and response data are necessary. In some situations, this
can possibly result in another problem. For example, if the temperature changes, this could mean
that the dynamic properties of the system under test may vary, especially if it contains visco-elastic
materials, which would violate the assumption that the system has time-invariant properties.

MATLAB Example 7.2

In this example, the FRF of an SDOF system excited by random force excitation is estimated.

clear all

%% Parameters
m=1;k=10000; % [kg,N/m]
z=0.01;c=2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m);wd=sqrt(1-zˆ2)*wn; % [rad/s]
fn=wn/(2*pi);Tn=1/fn; % [Hz,s]
SNRf=1000;SNRx=1000;

%% Random force signal
fs=2000; % [Hz]
dt=1/fs; T=120; t=0:dt:T; % [s]
f=randn(length(t),1); % [N]
N=length(f);

%% Calculation of displacement response
h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]
xc=conv(h,f)/fs; % [m]
xc=xc(1:length(f));

%% Theoretical FRF
df=0.001; ft=0:df:fs-df; % [Hz]
w=2*pi*ft; % [rad/s]
Ht=1./(k-w.ˆ2*m+j*w*c); % [m/N]

% mass and stiffness
% damping
% natural frequency
% natural frequency/period
% SNRs for added random noise

% sampling frequency
% time vector
% random force signal

% IRF
% convolution
% displacement response

% frequency vector

% theoretical FRF

(Continued)
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MATLAB Example 7.2 (Continued)
%% Frequency domain calculations
fwn=awgn(f,SNRf,'measured','dB');
xwn=awgn(xc,SNRx,'measured','dB');

Na = 32;
nfft=round(N/Na);
noverlap=round(nfft/2);
Sff=cpsd(fwn,fwn,hann(nfft),noverlap,nfft,fs);
Sxx=cpsd(xwn,xwn,hann(nfft),noverlap,nfft,fs);
Sfx=cpsd(xwn,fwn,hann(nfft),noverlap,nfft,fs);
Tfx=tfestimate(fwn,xwn,hann(nfft),noverlap,nfft,fs);
Coh=mscohere(fwn,xwn,hann(nfft),noverlap,nfft,fs);
df=1/(nfft*dt);
ff = 0:df:fs/2;

%% Time domain plots
figure
subplot(2,1,1)
plot(t,fwn); grid
axis([0,T,1.1*min(fwn),1.1*max(fwn)])
xlabel('time (s)');ylabel('force (N)');
subplot(2,1,2)
plot(t,xwn); grid
set(gca,'fontsize',16)
axis([0,T,1.1*min(xwn),1.1*max(xwn)])
xlabel('time (s)'); ylabel('displacement (m)');

%% Frequency domain plots
figure
semilogx(ff,10*log10(Sff)),grid
axis square; axis([1,1000,-60,-20])
xlabel('frequency (Hz)');
ylabel('force PSD (dB ref 1 Nˆ2/Hz)');

figure
semilogx(ff,10*log10(Sxx)),grid
axis square; axis([1,1000,-180,-60])
xlabel('frequency (Hz)');
ylabel('displacement PSD (dB ref 1 mˆ2/Hz)');

figure
semilogx(ff,20*log10(abs(Tfx)))
hold on
semilogx(ft,20*log10(abs(Ht))),grid
axis square; axis([1,1000,-140,-40])
xlabel('frequency (Hz)');
ylabel('displacement/force (dB ref 1 m/N)');

figure
semilogx(ff,180/pi*angle(Tfx))
hold on
semilogx(ft,180/pi*unwrap(angle(Ht))),grid
axis square,axis([1,1000,-200,0])
xlabel('frequency (Hz)');ylabel('phase (degrees)');

figure
semilogx(ff,Coh); grid
axis square, axis([1,1000,0,1])
xlabel('frequency (Hz)');ylabel('coherence');

% add random noise to force signal
% add random noise to displ. signal

% number of averages
% number of points in the DFT
% number of points in the overlap
% force PSD
% displacement PSD
% CPSD between force and displ.
% FRF between force and displ.
% coherence
% frequency resolution
% frequency vector

% time domain plots

% frequency domain plots

% plot of force PSD

% plot of displ. PSD

% plot of FRF

% plot of phase

% plot of coherence

(Continued)
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MATLAB Example 7.2 (Continued)

Results
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MATLAB Example 7.2 (Continued)

Comments:

1. The figures show the situation when the SNR for the measured force and displacement
signals are very large such that the measurement noise is negligibly small. An exercise for
the reader is to explore what happens when the SNRs are changed for the input and output.
Try using the H2 estimator.

2. Other exercises for the reader are to:
(a) explore the effects on the FRF and coherence of increasing (reducing) the number of

averages by reducing (increasing) the segment size,
(b) change the damping in the system and investigate the effects on the FRF and the coher-

ence for different segment sizes (number of points in the DFT),
(c) increase/decrease the overall time in which the system is excited, and the force and

response data are collected, and investigate the effects of changing the number of aver-
ages on the quality of the FRF.

7.4 Comparison of Excitation Methods and Effects
of Shaker–Structure Interaction

As discussed in Chapter 5, a shaker that is driven by a chirp signal or random noise can be used to
excite a structure, and an impact hamper can be used to deliver a force similar to a half-sine impulse.
It was shown previously in this chapter that there are differences in processing data from tests using
transient excitation, such as a chirp or an impulse, compared to persistent excitation from random
noise. Thus, it is reasonable to ask what is the best method of excitation? As with many simple
questions, there is not necessarily a simple answer, but some features of each approach can be
articulated. Before doing this, however, it is of interest to investigate the effects that a shaker may
have on test data due to dynamic interaction between the shaker and the structure under test.

Consider the test set-up shown in the left part of Figure 7.11, and a simple model for an SDOF test
structure shown in the right part of Figure 7.11. A shaker, which is connected to a structure through
a stinger and a force gauge, is driven by an oscillating current is(t). The force gauge measures the
force applied to the structure f e(t), which is not equal to the force f s(t) that is proportional to the
current supplied to the shaker. This is because part of the force generated is needed to drive the
shaker, which is given by f shaker(t), with the remainder being delivered to the structure. This force
relationship can be written as

fs(t) = fe(t) + fshaker(t). (7.12)

Now it is assumed that the force gauge and the stinger are very stiff, so that displacements of
the structure and the shaker are the same. If the excitation is harmonic at angular frequency 𝜔
then the forces have the form f e(t) = Fej𝜔t and the displacement is given by x(t) = Xej𝜔t, where F
and X are complex functions of frequency. As the shaker and the structure are modelled as parallel
combinations of lumped parameter elements, they can be described in a simple manner by their
dynamic stiffness as described in Chapter 2. Now,

Fshaker( j𝜔) = Kshaker( j𝜔)X( j𝜔) (7.13a)
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Figure 7.11 Structure excited by an electrodynamic shaker and a simple model of the test.

and

F( j𝜔) = K( j𝜔)X( j𝜔), (7.13b)

where Kshaker(j𝜔) = ks −𝜔2ms + j𝜔cs and K(j𝜔) = k−𝜔2m+ j𝜔c are the dynamic stiffnesses of the
shaker and structure under test, respectively. Eqs. (7.12) , (7.13a), and (7.13b) can be combined to
give

F( j𝜔)
Fs( j𝜔)

=
K( j𝜔)

K( j𝜔) + Kshaker( j𝜔)
. (7.14a)

Substituting for the dynamic stiffness of the structure and the shaker results in

F( j𝜔)
Fs( j𝜔)

=
k − 𝜔2m + j𝜔c

(k + ks) − 𝜔2(m + ms) + j𝜔(c + cs)
. (7.14b)

It can be seen that if Fs has a constant value independent of frequency, then the force applied
to the structure is not constant. Recall that, in the simulations hitherto in this chapter, the excita-
tion force due to a random signal had a flat spectrum, which was also broadly the case for chirp
excitation between the lower and upper cut-off frequencies. However, as shown in Eq. (7.14a,b), if
the amplitude of the current supplied to the shaker is kept constant, which is the case if the asso-
ciated power amplifier is used in current mode, the amplitude of the force applied to the structure
changes with frequency. In particular, at the resonance frequency of the structure, when k≈𝜔2m,
the force applied to the structure becomes very small. This is known as ‘force drop out’. The effect is
illustrated in Figure 7.12. Also shown in Figure 7.12 is the force that drives the shaker, which can be
determined by simply subtracting the force applied to the structure from the generated force to give

Fshaker( j𝜔)
Fs( j𝜔)

=
Kshaker( j𝜔)

K( j𝜔) + Kshaker( j𝜔)
(7.15a)

or
Fshaker( j𝜔)

Fs( j𝜔)
=

ks − 𝜔2ms + j𝜔cs

(k + ks) − 𝜔2(m + ms) + j𝜔(c + cs)
. (7.15b)

In Figure 7.12, it can be seen that provided that the shaker stiffness is much less than the stiff-
ness of the structure, then at low frequencies the force that drives the shaker is small compared
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Figure 7.13 Block diagram showing the relationship between the generated force, the force applied to the
structure, and its response.

to the force applied to the structure. It reduces at the natural frequency of the shaker, then it
increases whilst the shaker operates in its mass-controlled regime until a peak occurs at the nat-
ural frequency of the combination of the shaker and the structure, after which it decreases. This
is because above this frequency, the dynamic stiffness of the structure is greater than that of the
shaker.

A block diagram of an SDOF system excited by a shaker is shown in Figure 7.13. Also shown
in this figure are the PSD of the force generated by the shaker, the PSD of the force applied to the
structure, and the PSD of the mass displacement of the SDOF structure. It is clear that the force
applied to the structure does not have a flat spectrum. The force peaks at the resonance frequency of
the combined shaker–structure system, and ‘drops out’ at the resonance frequency of the structure.
The PSD of the displacement response has a peak, but this peak does not occur at the resonance
frequency of the structure. It peaks at the resonance frequency of the combined shaker–structure
system. This means that care should be taken when determining the natural frequency of a struc-
ture when excited by a shaker. This should be done by examining the peak of the modulus of the
FRF rather than the PSD of the response.

A comparison between two types of excitation – random noise and a chirp – is illustrated in
MATLAB Example 7.3.
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MATLAB Example 7.3

In this example, the FRF of a shaker-excited SDOF system is investigated for random and chirp
excitation.

clear all

%% Parameters
% structure
m=1;k=10000; % [kg,N/m]
z=0.01;c=2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m);wd=sqrt(1-zˆ2)*wn; % [rad/s]
SNRf=1000;SNRx=1000;
SNRf=20;SNRx=100;

% shaker
ms=0.1;ws=2*pi*10; ks=wsˆ2*ms; % [kg,rad/s,N/m]
zs=0.1;cs=2*zs*sqrt(ms*ks); % [Ns/m]

%% Random force signal
fs=2000; % [Hz]
dt=1/fs;T=120;t1=0:dt:T; % [s]
f=randn(length(t1),1); % [N]
N=length(f);TT=N*dt;
t=0:dt:(length(f)-1)*dt; % [s]

%% Calculation of frequency domain quantities
Na=32;nfft=round(N/Na);
noverlap=round(nfft/2);
df=1/(nfft*dt); % [Hz]
ff=0:df:fs/2;w=2*pi*ff;ft=ff; % [Hz]

[fe,xc,Ht]=calc(f,m,k,c,ms,ks,cs,w,wd,wn,z,t,fs);

Sfsfs=cpsd(f,f,hann(nfft),noverlap,nfft,fs);
Sff=cpsd(fe,fe,hann(nfft),noverlap,nfft,fs);
Sxx=cpsd(xc,xc,hann(nfft),noverlap,nfft,fs);
H=tfestimate(fe,xc,hann(nfft),noverlap,nfft,fs);
coh=mscohere(fe,xc,hann(nfft),noverlap,nfft,fs);

plots(ft,ff,Sfsfs,Sff,Sxx,H,Ht,coh)
clear Sfsfs; clear Sff; clear Sxx; clear Sfx

%% chirp force signal
T=5;t1=0:dt:T; % [s]
f1=1;f2=300; % [Hz]
a=2*pi*(f2-f1)/(2*T); b=2*pi*f1;
fc=sin(a*t1.ˆ2+b*t1); % [N]
f=[fc zeros(1,length(fc))]; % [N]
N=length(f);
t=0:dt:(N-1)*dt; Tm=max(t); % [s]
df=1/(N*dt);ft=0:df:fs/2;w=2*pi*ft;

[fe,xc,Ht]=calc(f,m,k,c,ms,ks,cs,w,wd,wn,z,t,fs);

%% Calculation of frequency domain quantities
for n=1:16
fwn=awgn(fe,SNRf,'measured','dB');
xwn=awgn(xc,SNRx,'measured','dB');
Fs=fft(f)*dt; % [N/Hz]

% mass and stiffness
% damping
% natural frequency
% SNRs for random excitation
% SNRs for chirp excitation

% mass, nat. freq. and stiffness
% damping

% sampling frequency
% time vector
% random force signal

% time vector

% number of averages, points in DFT
% number of points in the overlap
% frequency resolution
% frequency vector

% calculate force and displacement

% PSD of force generated by shaker
% PSD of force applied to structure
% PSD of displacement response
% FRF
% coherence

% function to plot the results

% time vector
% upper and lower frequencies
% coefficients
% chirp force signal
% zero padded force signal

% time vector
% frequency vector

% calculate force and displacement

% add random noise
% add random noise
% DFT of generated force

(Continued)
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MATLAB Example 7.3 (Continued)
F=fft(fwn)*dt; % [N/Hz]
X=fft(xwn)*dt; % [m/Hz]
Sfsfs(n,:)=Fs.*conj(Fs)/Tm; % [N2/Hz]
Sff(n,:)=F.*conj(F)/Tm; % [N2/Hz]
Sxx(n,:)=X.*conj(X)/Tm; % [m2/Hz]
Sfx(n,:)=X.*conj(F)/Tm; % [Nm/Hz]

end

Sfsfs=mean(Sfsfs);Sff=mean(Sff);Sxx=mean(Sxx);
Sfx=mean(Sfx);

H=Sfx./Sff; % [m/N]
coh=abs(Sfx).ˆ2./(Sxx.*Sff);
ff=0:df:fs-df; % [Hz]
plots(ft,ff,Sfsfs,Sff,Sxx,H,Ht,coh)

%% Functions
%% Calculation of the force and displacement
function [fe,xc,Ht]=...
calc(f,m,k,c,ms,ks,cs,w,wd,wn,z,t,fs)
K=k-w.ˆ2*m+j*w*c; % [N/m]
Ks=ks-w.ˆ2*ms+j*w*cs; % [N/m]
Fe=K./(K+Ks); % [N]
G=[Fe,fliplr(conj(Fe(1:length(Fe)-1)))];
g=fs*ifft(G); % [1/s]
fe = conv(real(g),f)/fs; % [N]
fe = fe(1:length(f)); % [N]
Ht=1./K; % [m/N]

% impulse response
h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]
xc=conv(h,fe)/fs; % [m]
xc=xc(1:length(fe)); % [m]

end

%% Plot the results
function plots(ft,ff,Sfsfs,Sff,Sxx,H,Ht,coh)
figure
semilogx(ff,10*log10(Sfsfs));
hold on
semilogx(ff,10*log10(Sff)); axis square; grid
xlabel('frequency (Hz)');
ylabel('force PSD (dB ref 1 Nˆ2/Hz)');

figure
semilogx(ff,10*log10(Sxx)); axis square; grid
xlabel('frequency (Hz)');
ylabel('displacement PSD (dB ref 1 mˆ2/Hz)');

figure
semilogx(ff,20*log10(abs(H)));
hold on
semilogx(ft,20*log10(abs(Ht))); axis square; grid
xlabel('frequency (Hz)');
ylabel('displacement/force (dB ref 1 m/N)');

figure
semilogx(ff,180/pi*unwrap(angle(H)));
hold on
semilogx(ft,180/pi*unwrap(angle(Ht)));
axis square; grid
xlabel('frequency (Hz)');ylabel('phase...

(degrees)');

% DFT of force applied to structure
% DFT of displacement
% PSD of force generated by shaker
% PSD of force applied to structure
% PSD of displacement response
% CPSD of force and displacement

% averaging the results

% FRF
% coherence
% frequency vector
% function to plot the results

% function to calc. force and displ.

% dynamic stiffness of structure
% dynamic stiffness of shaker
% force applied to structure
% force FRF
% force IRF
% applied force
% applied force
% theoretical FRF

% IRF
% Convolution
% displacement response

% Frequency domain plots

% plot of force PSD

% plot of displ. PSD

% plot of FRF

% plot of phase

(Continued)
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MATLAB Example 7.3 (Continued)

figure
semilogx(ff,coh); axis square; grid;
xlabel('frequency (Hz)');ylabel('coherence');
end

% plot of coherence

Results
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MATLAB Example 7.3 (Continued)

Comments:

1. The figures show the frequency domain plots when the SNRs for the measured force and
displacement signals are very large. An exercise for the reader is to explore what happens
when the SNRs are changed for the input and output. Try using the H2 estimator.

2. Although the PSD of the force applied to the structure exhibits a peak and a trough, com-
pared to the generated force, there is no trough in the PSD of the displacement response.
The trough coincides with the resonance frequency of the structure, and the peak coincides
with the resonance frequency of the combined structure and shaker system.

3. Even though the force input and displacement response are different for random noise and
chirp excitation, the estimated modulus and the phase for both cases are broadly similar.
Note that a Hanning window is used for random excitation, and a rectangular window is
used for chirp excitation. There is a small amount of bias error at frequencies close to the
resonance frequency for the FRF estimated using random excitation. An exercise for the
reader is to adjust the segment window size to reduce this error.

4. An exercise for the reader is to adjust the rate of change of frequency (chirp rate) and see
if this makes a difference to the estimate of the FRF.

5. Other exercises for the reader are to:
(a) change the damping in the system and investigate the effects on the force drop out, the

FRF estimates and the coherence for different segment sizes (number of points in the
DFT), different chirp rate, etc.

(b) by changing the SNRs and other processing parameters, investigate the accuracy of the
FRF estimates, and speculate on which is the better way to excite the system.

7.5 Virtual Experiment – Vibration Isolation

A ubiquitous problem in vibration engineering is the dynamic decoupling of a vibrating system
from its surroundings. This is called vibration isolation. It is often achieved by using a resilient
element that is modelled as a parallel combination of a stiffness and a viscous damper. Vibration
isolation occurs above the resonance frequency when the stiffness of the isolator interacts with
the mass of the vibration source. To calculate the frequency at which the resonance occurs and
the subsequent level of vibration isolation, the stiffness and the damping of the isolator need to be
known, and in some cases, these are estimated from experimental data. The way in which this can
be achieved is described in this chapter, but before this, the principal mechanisms of vibration are
discussed in Section 7.5.1.

7.5.1 The Physics of Vibration Isolation

To illustrate the fundamental mechanisms of vibration isolation, consider the two systems shown
in Figure 7.14. The system on the left shows a force-excited system, which could represent, for
example, the isolation of a vibrating machine from its host structure, and the system on the right
shows a base-excited system, which could represent the isolation of an item of equipment from a
vibrating host structure. These two systems involve idealised models in which many assumptions
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Figure 7.14 Two basic vibration isolation situations.

are made such as the host structure for the force-excited system is rigid, and there is only an SDOF
system in each case. Nonetheless, the systems illustrate the basic physical principles involved
in vibration isolation. The efficacy of a vibration isolator is assessed at each frequency. Thus,
harmonic excitation is assumed, so that fe(t) = Fej𝜔t, ft(t) = Ftej𝜔t, y(t) = Yej𝜔t, and x(t) = Xej𝜔t. In
the force-excited system the ratio of the amplitude of the transmitted force to the amplitude of the
excitation force is used to quantify vibration isolation. This is called the force transmissibility and
is given by |Tforce| = |Ft∕F|. Likewise, in the base-excited case, vibration isolation is quantified
by the displacement transmissibility given by |Tdispl.| = |X∕Y |. If the isolator comprises linear
stiffness and damping, the force transmissibility is equal to the displacement transmissibility, so
the term transmissibility is simply used and is represented by |T|. The equation of motion for the
force-excited system is given by

mẍ(t) + cẋ(t) + kx(t) = fe(t), (7.16)

and the force transmitted to the rigid foundation is given by

ft(t) = cẋ(t) + kx(t). (7.17)

Assuming harmonic excitation, as discussed above, results in

kX − 𝜔2mX + j𝜔cX = F (7.18)

and

Ft = kX + j𝜔cX . (7.19)

Note that in Eq. (7.19) the term kX is the force that is transmitted to the foundation through the
spring and the term j𝜔cX is the force transmitted to the foundation through the damper. It can be
seen that relative to the force transmitted through the spring, the force transmitted through the
damper increases with frequency, and therefore can be dominant at high frequencies. Combining
Eqs. (7.18) and (7.19) results in

|T| =
|||||
Ft

F

|||||
=
||||

k + j𝜔c
k − 𝜔2m + j𝜔c

|||| =
|||||

(
1

k − 𝜔2m + j𝜔c

)
× (k + j𝜔c)

|||||
. (7.20)

The first term in brackets in the right-hand side of Eq. (7.20) is the receptance of the SDOF
system and the second term in brackets corresponds to the transmitted force per unit displacement
amplitude of the mass. The damping term in these terms has different physical effects. In the
first term the damping has a beneficial effect in that it reduces the displacement of the mass, and
hence the transmitted force, at the resonance frequency. However, the damping in the second
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Figure 7.15 Force or displacement transmissibility of an SDOF system.

term is undesirable, as an increase in damping results in a higher force being transmitted at high
frequencies.

The modulus of the transmissibility (for both force and displacement) is plotted in Figure 7.15, for
three values of damping ratio, 𝜁 = 0.001, 0.01, and 0.1. Note that both axes have logarithmic scales.
It can be seen that there is a frequency region below the isolation frequency, given by f =

√
2fn,

in which f n is the resonance frequency, that is independent of the level of damping, where there
is force or displacement amplification rather than attenuation. In the frequency range above the
isolation frequency, i.e. where f >

√
2fn, the transmitted force (displacement) is less than the exci-

tation force (displacement), so vibration isolation occurs. Note that an increase in damping results
in a reduction in the response at the resonance frequency, but an increase in the transmitted force
(displacement) at high frequencies. Thus, there is a trade-off between reducing the transmitted
force (displacement) at the resonance frequency and improving vibration isolation at high frequen-
cies. The phase of the transmissibility is not shown as it is of little interest in vibration isolation
unless there are multiple sources. If the machine to be isolated operates at constant speed, such that
it generates a force at a frequency corresponding to the operating speed of the machine (and pos-
sibly harmonics of this frequency), the isolation system should be designed so that the resonance
frequency of the system is much less than the operating frequency of the machine. Provided that
the machine can be run-up to speed so that it transverses the resonance frequency rapidly, then it is
better to have an isolation system with light damping. This is investigated in MATLAB Example 7.5.

7.5.2 Experimental Determination of the Stiffness and Damping of a Vibration
Isolator

Sometimes it is necessary to determine the stiffness and damping properties of an isolator by
experiment. This can be carried out using specialised test equipment in which the force and
relative displacement across the isolator can be measured as it is cycled at very low frequency. The
dynamic stiffness of the isolator may also be measured (ISO 10846, 2008). In many cases, however,
the test equipment to carry out such measurements is not available, so an improvised experiment
needs to be conducted. An example of such an experiment is shown in Figure 7.16. The isolator
and suspended mass are placed on a shaker. The mass should be compact and representative of
the amount of mass that the isolator will support in practice, so that the static equilibrium position
of the isolator is correct. Either a chirp or a random noise signal can be used to drive the shaker
via a power amplifier. Using two accelerometers, one positioned on the shaker and one positioned
on the mass, the displacement transmissibility can be measured (note that lasers can also be used
to measure velocity or displacement instead of acceleration). The acceleration signals are passed
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Figure 7.16 Schematic diagram of an experiment to determine the stiffness and damping characteristics
of a vibration isolator, and its simplified equivalent model.

through conditioning amplifiers and captured by a data acquisition system, which converts the
signals from analogue to digital format.

In a real experiment the transmissibility can be calculated by using the Fourier transforms of
the acceleration signals, which is also the case in the virtual experiment described in MATLAB
Example 7.4. For simplicity, here it is assumed that time history of the shaker acceleration – the base
of the isolator – is simply a scaled version of the current supplied to the shaker. This is considered to
be a reasonable assumption, if the shaker is large enough such that the dynamics of the isolator and
suspended mass do not affect the vibration of the shaker, or a control system is used to maintain
a prescribed level of shaker vibration. Once the transmissibility has been estimated with sufficient
frequency resolution to capture the peak at the resonance frequency, the stiffness and damping
can be estimated. If the mass is measured before it is attached to the isolator, the stiffness can be
determined by estimating the natural frequency from the transmissibility plot, and noting that

k = (2𝜋fn)2m, (7.21)

and the damping can be determined by noting that, for light damping, at the resonance frequency,
Eq. (7.20) becomes

|T|max ≈ k
2𝜋fnc

= 1
2𝜁
. (7.22)

Note that it is extremely important to check that the frequency resolution is adequate, so that
damping value is estimated accurately. The choice of frequency resolution can be guided by noting
that the damping ratio is related to the half-power point frequencies f 1 and f 2, and the resonance
frequency by 𝜁 = (f 2 − f 1)/(2f n). To ensure that there are at least three frequency points between
the half-power point frequencies the frequency resolution should satisfy the inequality Δf ≤ 𝜁 f n.
This means that the segment time duration should satisfy the inequality T ≥ 1/(𝜁 f n). It can thus
be seen that the choice of signal processing parameters is dependent upon the properties of the
system. If the natural frequency is low and the damping in the isolator is thought to be small, then
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a large time segment is required. Further, if random noise is used to excite the system, then long
duration time histories should be captured to ensure that enough averages so that there is a small
random error.

MATLAB Example 7.4

In this example, an experiment to estimate the stiffness and damping properties of a vibration
isolator is simulated.

clear all

% Suspended mass
m=1; % [kg]
% Isolator
k=10000; % [N/m]
z=0.01;c=2*z*sqrt(m*k); % [Ns/m]

%% Random acceleration signal
fs=2000; % [Hz]
dt=1/fs;T=240;t1=0:dt:T; % [s]
y = randn(length(t1),1); % [m/s2]
N=length(y);TT=N*dt;
t=0:dt:(length(y)-1)*dt; % [s]

%% Parameters for processing the data
Na = 16;nfft=round(N/Na);
noverlap=round(nfft/2);
df=1/(nfft*dt);
ff=0:df:fs/2;w=2*pi*ff;ft=ff;

%% Calculation of the acceleration of the mass
Tf=(k+j*w*c)./(k-w.ˆ2*m+j*w*c);
TTf=[Tf,fliplr(conj(Tf(1:length(Tf)-1)))];
ttf=fs*ifft(TTf);
x=conv(real(ttf),y)/fs;
x=x(1:length(y));

%% Calculation of the frequency domain quantities
Syy=cpsd(y,y,hann(nfft),noverlap,nfft,fs);%[(m2/s2)/Hz]
Sxx=cpsd(x,x,hann(nfft),noverlap,nfft,fs);%[(m2/s2)/Hz]
H=tfestimate(y,x,hann(nfft),noverlap,nfft,fs);
coh=mscohere(y,x,hann(nfft),noverlap,nfft,fs);

%% Plot the results
figure
subplot(2,1,1)
plot(t,y); axis([0,T,1.1*min(y),1.1*max(y)])
xlabel('time (s)'); ylabel('shak. acc. (m/sˆ2)');
subplot(2,1,2)
plot(t,x); axis([0,T,1.1*min(x),1.1*max(x)])
xlabel('time (s)');
ylabel('mass acc. (m/sˆ2)');

figure
semilogx(ff,10*log10(Syy))
axis square; grid; axis([1,200,-50,-20])
xlabel('frequency (Hz)');
ylabel('shak. acc. PSD (dB ref 1 (mˆ2/sˆ4)/Hz)');

% suspended mass

% stiffness
% damping

% sampling frequency
% time vector
% random acceleration signal

% time vector

% number of averages, points in DFT
% number of points in the overlap
% frequency resolution
% frequency vector

% acceleration transmissibility

% IDFT of the transmissibility
% acceleration response
% acceleration response

% PSD of shaker acceleration
% PSD of mass acceleration
% FRF (transmissibility)
% coherence

% Time domain plots
% plot of shaker acceleration

% plot of mass acceleration

% Frequency domain plots
% plot of shaker acc. PSD

(Continued)
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MATLAB Example 7.4 (Continued)

figure
semilogx(ff,10*log10(Sxx))
axis square; grid; axis([1,200,-80,20])
xlabel('frequency (Hz)');
ylabel('mass acc. PSD (dB ref 1 (mˆ2/sˆ4)/Hz)');

figure
semilogx(ff,20*log10(abs(H)))
hold on
semilogx(ft,20*log10(abs(Tf)),':')
axis square; grid; axis([1,200,-60,40])
xlabel('frequency (Hz)');
ylabel('|Transmissibility| (dB ref unity)');

figure
semilogx(ff,180/pi*unwrap(angle(H)))
hold on
semilogx(ft,180/pi*unwrap(angle(Tf)),':')
axis square; grid; axis([1,200,-200,0])
xlabel('frequency (Hz)');ylabel('phase (degrees)');

figure
semilogx(ff,coh)
axis square; grid; axis([1,200,0,1.1])
xlabel('frequency (Hz)');ylabel('coherence');

% plot of mass acc. PSD

% plot of estimated transmissibility

% plot of theor. transmissibility

% plot of phase

% plot of coherence

Results
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MATLAB Example 7.4 (Continued)

Estimated stiffness = 1.002 × 104 N/m

Estimated damping ratio = 0.011

Actual value = 1.00 × 104 N/m

Actual value = 0.01
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Comments:

1. To estimate the stiffness and damping accurately, a very fine frequency resolution is
needed. This is particularly important for the damping parameter, especially if the
damping is very small. It is particularly challenging to estimate the stiffness and damping
accurately when the system has a very low natural frequency and is lightly damped,
i.e. if 𝜁 f n ≪ 1.

2. An exercise of the reader is to investigate the effects on the transmissibility, and hence
the stiffness and damping when (a) the damping is changed, and (b) when the number of
averages is changed.

3. An exercise for the reader is to try changing the excitation signal to a chirp, and draw some
conclusions on which is the best for this type of experiment.

7.5.3 Experiment to Investigate the Trade-off Between Decreasing the Response
at the Resonance Frequency and Improving Vibration Isolation

Once the stiffness and damping values of an isolator have been estimated, as discussed in the pre-
vious subsection, they can be used to predict of the dynamic behaviour of the isolator in any given
situation. An illustration of how this may be carried out is described next. To simplify the problem,
consider a similar arrangement to that shown in Figure 7.16, but with the isolator connected to
ground and the suspended mass is excited by a force which has a constant amplitude that is inde-
pendent of frequency. The force has similar characteristics to that generated during the start-up of
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Figure 7.17 Illustration of the vibration of a suspended mass on an isolator as the frequency is increased
from 0 Hz to the operating frequency.

a machine from rest to a frequency corresponding to the running speed of the machine (the opera-
tional frequency). A graph showing the frequency as a function of time is shown in Figure 7.17. The
excitation frequency increases linearly with time, similar to a linear chirp, until it reaches the oper-
ational frequency, after which it has a constant value. The force transmissibility for the combined
isolator–mass system is shown to the left of the frequency–time graph. Note that this graph has
linear axes unlike the previous transmissibility graphs. It can be seen that the force sweeps through
the resonance frequency until the operational frequency, which is in the isolation frequency region.
The time history of the transmitted force corresponding to the frequency sweep is shown at the
bottom of Figure 7.17. It can be seen that the force increases as the excitation frequency passes
through the resonance frequency before it reduces rapidly as it passes into the vibration isolation
region. For a well-designed vibration isolation system, the operational frequency should be much
greater than the natural frequency. The maximum value of the transmitted force is a function of the
rate of change of excitation frequency and the damping in the isolator. At the operational speed,
the amplitude of the transmitted force is a function of damping in the isolator, and the ratio of the
operational frequency and the natural frequency. These relationships are investigated in MATLAB
Example 7.5.

MATLAB Example 7.5

In this example, the transmitted force to the rigid foundation supporting a suspended mass
is calculated as a function of time. The aim is to illustrate the effect of the rate of change
of increasing frequency on the maximum response, and also the effect of damping on the
transmitted force.

(Continued)
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MATLAB Example 7.5 (Continued)

clear all

% Suspended mass
m=1; % [kg]
% Isolator
k=10000; % [N/m]
z=0.01;c=2*z*sqrt(m*k); % [Ns/m]

% Calculation of transmitted force
%slow rate of change of freq.
n=1000;
[fmax,fe,ft,t]=calc(m,k,c,n);
fe1=fe;ft1=ft;t1=t;

%medium rate of change of freq.
n=200;
[fmax,fe,ft,t]=calc(m,k,c,n);
fe2=fe;ft2=ft;t2=t;

%fast rate of change of freq.
n=20;
[fmax,fe,ft,t]=calc(m,k,c,n);
fe3=fe;ft3=ft;t3=t;

%% Plot the results
plot(t1,ft1,'linewidth',3,'Color',[.7 .7 .7])
hold on
plot(t2,ft2,'linewidth',3,'Color',[.5 .5 .5])
hold on
plot(t3,ft3,'linewidth',3,'Color',[.3 .3 .3]); grid
set(gca,'fontsize',24)
axis([0,12,1.1*min(ft1),1.1*max(ft1)])
axis([0,12,-15,15])
xlabel('time (s)');ylabel('transmitted force (N)');

%% Function
function [fmax,fe,ft,t]=calc(m,k,c,n)
fs=2000;dt=1/fs; % [Hz,s]
fmax=100; % [Hz]
T=n/fmax;t1=0:dt:T; % [s]
a=2*pi*fmax/(2*T);
ff1=sin(a*t1.ˆ2); % [N]
t2=0:dt:15-T; % [s]
ff2=sin(n*pi+2*pi*fmax*t2); % [N]
fe=[ff1, ff2]; % [N]
N=length(fe);
t=0:dt:(N-1)*dt;Tm=max(t); % [s]
df=1/(N*dt);ff=0:df:fs/2;w=2*pi*ff;ft=ff;

%% Calculation of the transmitted force
Tf=(k+j*w*c)./(k-w.ˆ2*m+j*w*c);
TTf=[Tf,fliplr(conj(Tf(1:length(Tf)-1)))];
ttf=fs*ifft(TTf); % [N/s]
ft=conv(real(ttf),fe)/fs; % [N]
ft=ft(1:length(fe)); % [N]

end

% suspended mass

% stiffness
% damping

% number of cycles
% function to calculate trans. force

% number of cycles

% number of cycles

% time domain plots

% function to calculate trans. force
% sampling freq., time resolution
% operational frequency
% time vector
% coefficient
% force with increasing freq.
% time vector
% steady-state force
% total force

% time vector
% freq. resolution., freq. vector

% force transmissibility
% double-sided spectrum
% IDFT of the transmissibility
% transmitted force

(Continued)
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MATLAB Example 7.5 (Continued)

Results
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Comments:

1. The results show that if the rate-of-change of excitation frequency is increased, the maxi-
mum transmitted force due to the resonance frequency is reduced, but the transmitted force
at the operational frequency remains the same. This can be seen in both figures shown
above.

2. The trade-off between reducing the response at the resonance frequency by adding damp-
ing and increasing the transmitted force at the steady-state operational frequency can be
seen. By changing damping, from 𝜁 = 0.01 in the upper graph to 𝜁 = 0.1 in the lower graph,
the maximum transmitted force is reduced considerably. However, the penalty for this is an
increase in the transmitted force at the operational frequency, as can be seen in the insets
shown in the upper and lower graphs.

3. An exercise for the reader is to plot graphs to show the maximum transmitted force due
to the resonance frequency changes as the rate-of-change frequency is increased and the
damping is changed. To do this you will need to run the simulation several times to calculate
the maximum transmitted force for different values of the rate-of-change of frequency and
damping. What is the optimum condition?
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7.6 Summary

This chapter has shown how to estimate a frequency response function (FRF) from measured input
and output data. Two types of input signal have been considered. The first involves transient exci-
tation such as an impact from an instrumented hammer, and chirp excitation using a shaker. The
second involves persistent excitation using a shaker driven with random noise. A summary of the
method is given in Table 7.2. In all cases, averaging of data is carried out in the frequency domain

Table 7.2 Summary of methods to obtain an FRF.

Excitation
Impact hammer Shaker

Transient excitation Persistent excitation

Half-sine pulse Chirp Random excitation

Time domain

Input (force, displacement, velocity, or acceleration)
Output (force, displacement, velocity, or acceleration)

Frequency domain
(For the force
input and
displacement
response output
case)
(P averages)

Input PSD S̃ff(𝜔) =
1
P

P∑
p=1

|Fp( j𝜔)|2

Output PSD S̃xx(𝜔) =
1
P

P∑
p=1

|Xp( j𝜔)|2

CPSD S̃fx( j𝜔) = 1
P

P∑
p=1

Xp( j𝜔)F∗
p ( j𝜔) S̃xf( j𝜔) = S̃∗

fx( j𝜔)

S̃xf( j𝜔) = 1
P

P∑
p=1

X∗
p ( j𝜔)Fp( j𝜔)

FRF H1( j𝜔) =
S̃fx( j𝜔)

S̃ff(𝜔)

H2( j𝜔) =
S̃xx(𝜔)
S̃xf( j𝜔)

Coherence 𝛾2
fx(𝜔) =

|S̃fx( j𝜔)|2
S̃ff(𝜔)S̃xx(𝜔)
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to remove background/instrumentation noise, and in the case of random excitation to reduce the
random error in the frequency domain estimates. The effect of noise on the FRF estimate has been
discussed, and it has been shown that it is better to use the power spectral densities (PSDs) and
cross power spectral densities (CPSDs) in the estimation of an FRF rather than ratios of the Fourier
transforms of the input and output time histories. This helps to remove noise that is uncorrelated
between the input and the output, as the cross-spectral density acts as a filter for this noise. Two
estimators for the FRF have been discussed, namely the H1 and the H2 estimators. The H1 estimator
is insensitive to noise on the output but has a bias caused by noise on the input, which results in the
modulus being underestimated. Conversely the H2 estimator is insensitive to noise on the input,
but has a bias, caused by noise on the output, which results in the modulus being overestimated. It
is straightforward to calculate both estimators, but in practice the H1 estimator is more often used,
because in many cases it is easier to control the signal-to-noise ratio (SNR) of the input rather than
the output. There are other estimators that can be used, but these are not discussed in this book.
The interested reader is referred to Shin and Hammond (2008) for further information. Examples
have been provided in which three different types of excitation signal are used, and the issue of
‘force drop out’ at the resonance frequency of the structure under test when a shaker is used to
excite the structure has been illustrated. This occurs because of shaker–structure interaction.

To show how the estimation of an FRF can lead to useful information about the physical proper-
ties of a system, a vibration isolator was considered. Using a shaker excited with random noise, the
acceleration (or displacement) transmissibility of a mass suspended by an isolator was estimated
from a virtual experiment. The stiffness and damping properties of the isolator were estimated from
the measured FRF. Using these results, it was shown how the maximum transmitted force to a rigid
foundation could be calculated during the run-up of a machine suspended on the isolator.
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8

Multi-Degree-of-Freedom (MDOF) Systems: Dynamic Behaviour

8.1 Introduction

In the previous chapters in this book, the vibrating system used in the analysis and simulations
was an SDOF system. This was chosen for simplicity and for relatively easy interpretation
of the dynamic behaviour. This system has a single resonance frequency, and for an SDOF
system attached to ground, it exhibits stiffness-like behaviour below the resonance frequency,
damping-like behaviour at frequencies close to the resonance frequency, and mass-like behaviour
above the resonance frequency. Although a study of this type of system is useful in terms of
understanding some features of a vibrating system, most real systems have several resonance
frequencies of interest, and frequencies where the response of the system is very small, which
are called anti-resonance frequencies. Such systems cannot be modelled using a single mass,
a single spring, and a single damper. They require several of these components and are called
multi-degree-of-freedom (MDOF) systems.

In this chapter two types of MDOF system are described. The first is an extension of the SDOF
system. A number of lumped parameter SDOF systems are connected together in a chain-like man-
ner to form an MDOF system, in which the number of degrees-of-freedom (DOF) is equal to the
number of masses, i.e. a system with N DOF has N natural frequencies. The second is a continu-
ous system which has distributed rather than lumped parameters, and has an infinite number of
DOF. To illustrate the way in which this type of system can be modelled in the time and frequency
domains, a rod and a beam are considered.

8.2 Lumped Parameter MDOF System

A simple example of an MDOF system is shown in Figure 8.1. It consists of a chain of N SDOF
systems connected in series. Such a system is called a lumped parameter system. The equation of
motion is a matrix equation, which has a similar form to the scalar equation of motion for an SDOF
system, and is given by

Mẍ + Cẋ + Kx = f, (8.1)

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations

http://www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
Pavilion
#custom
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fe1(t) fe2(t)

x1(t) x2(t) xN(t)

feN(t)

…

k1 k2

m2

c2c1

m1

kN

mN

cN

Figure 8.1 Simple lumped-parameter model of an MDOF system.

where the mass, stiffness, and damping matrices are given by

M =

⎡
⎢
⎢
⎢
⎢⎣

m1 0 · · · 0
0 m2 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · mN

⎤
⎥
⎥
⎥
⎥⎦

, K =

⎡
⎢
⎢
⎢
⎢⎣

k1 + k2 −k2 · · · 0
−k2 k2 + k3 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · kN

⎤
⎥
⎥
⎥
⎥⎦

, C =

⎡
⎢
⎢
⎢
⎢⎣

c1 + c2 −c2 … 0
−c2 c2 + c3 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · cN

⎤
⎥
⎥
⎥
⎥⎦

,

and the force and displacement vectors are given by f = {f e1 f e2 · · · f eN }T and x =
{

x1 x2 · · · xN
}T

in which f el is the force applied to the l-th mass and xn is the displacement of the n-th mass, respec-
tively. The superscript T denotes the transpose, and as before, the overdots denote differentiation
with respect to time.

If harmonic excitation is assumed such that f = fej𝜔t and x = xej𝜔t, where f =
{

F1 F2 · · · FN

}T
,

and x =
{

X1 X2 · · · XN

}T
, in which Fl and Xn are the complex amplitudes of the force applied to

the l-th mass and the complex displacement amplitudes of the n-th mass, respectively (see Chapter
2 to see the meaning of complex amplitude), then Eq. (8.1) becomes

[K − 𝜔2M + j𝜔C]x = f. (8.2)

The vector of complex displacement amplitude responses is then given by

x = Hf, (8.3)

where H = [K−𝜔2M+ j𝜔C]−1 is an N ×N receptance matrix in which the superscript −1 denotes
the matrix inverse. The diagonal terms of the receptance matrix are called point receptances, and
the off-diagonal terms are called the transfer receptances (Bishop and Johnson, 1960; Mead, 1999).
Both types of FRF contain resonance and anti-resonance frequencies. The resonances occur at
the same frequencies in both types of FRF because natural frequencies of a structure are a global
phenomenon, but the anti-resonances occur at different frequencies, according to the position mea-
sured in the structure. The point receptances have particular properties, which are illustrated along
with the transfer receptances using a 3DOF system in Section 8.2.1. Note that the transfer recep-
tance Hnl, where the subscripts nl denote the row and column in the matrix H (displacement of
the n-th mass due to the force applied to the l-th mass), is equal to Hln because of reciprocity (Fahy,
2003). This means that that receptance matrix H is symmetric.

8.2.1 Example – 3DOF System

To illustrate some FRF features of an MDOF system, a 3DOF system is considered. The system is
shown at the top of Figure 8.2. The matrix equation of motion that describes the system is Eq. (8.1)
with the mass, stiffness, and damping matrices given by

M =
⎡
⎢
⎢⎣

m1 0 0
0 m2 0
0 0 m3

⎤
⎥
⎥⎦
, K =

⎡
⎢
⎢⎣

k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

⎤
⎥
⎥⎦
, C =

⎡
⎢
⎢⎣

c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3

⎤
⎥
⎥⎦
,
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Figure 8.2 Point and transfer receptances of a 3DOF lumped parameter system.

in which m1 = m2 = m3 = m, k1 = k2 = k3 = k, c1 = c2 = c3 = c, and the force and displacement

vectors are given by f =
{

F1 0 0
}T

and x =
{

X1 X2 X3

}T
, respectively. Although this MDOF sys-

tem appears to be quite specific, its FRFs exhibit some general features that are found in many
systems. To illustrate these features, a harmonic force with amplitude F1 is applied to mass m1.
The point receptance is then given by X1∕F1 = H11 and the two transfer receptances are given by
X2∕F1 = H21 and X3∕F1 = H31. These are plotted in Figure 8.2. In the first row the FRFs are plot-
ted with damping set to zero. The reason for this is that although it gives non-physical results at
the resonance frequencies (i.e. infinite displacements), it is helpful in the understanding of why
anti-resonances occur. In the remaining two rows of Figure 8.2, the modulus and phase are plotted
for the respective FRFs for both the cases when damping is set to zero, and when there is a small
amount of damping in the system.
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Concerning the FRFs for the undamped case shown in the first row of Figure 8.2, it is important
to note that because the masses either move in-phase or out-of-phase with the applied force, it is not
necessary to plot the modulus and phase separately. Thus, when an FRF is positive, the displace-
ment of the mass mn is in-phase with the applied force F1, and when an FRF is negative, the phase
is −180∘ (anti-phase). Further, it can be noted that there are three resonance frequencies, f 1, f 2,
and f 3 as the system has 3DOF. The way in which these are calculated is discussed in Section 8.2.2.
It can be seen that at frequencies below the first resonance frequency, all the masses are vibrating
in-phase with each other. At the first resonance frequency, the displacements of all three masses
remain in-phase with each other and become infinite, because there is no damping, and then they
all undergo a phase change and appear from minus infinity above the resonance frequency.

In between the first and second resonance frequencies, the phase trajectories of m1 and m2 dif-
fer from the phase trajectory of m3. Following the first resonance frequency, the displacement of
m1 is initially in anti-phase with the applied force (X1∕F1 is negative), but then it changes sign at
a particular frequency to become in-phase with the force (X1∕F1 is positive). This means that it
passes through zero. The frequency at which this occurs is called an anti-resonance frequency and
is an important phenomenon in structural dynamics. In an undamped system, the displacement
of m1 is zero at this frequency, irrespective of magnitude of the applied force. The displacement
of m2 follows a similar trajectory, but the anti-resonance occurs at a different frequency. In gen-
eral, anti-resonances in FRFs at different measurement positions on a structure occur at different
frequencies, unlike a resonance frequency, which occurs at the same frequency in all FRFs, inde-
pendent of the position. For this reason, resonance frequencies are called a global feature of the
structure, whereas anti-resonances are called a local feature. As frequency is increased from just
above the first resonance frequency to the second resonance frequency, the displacement of m3
does not change phase like that of m1 and m2. This means that the displacement of m3 does not
pass through zero, and hence there is no anti-resonance. It also means that at the second resonance
frequency, the displacement of m3 is in anti-phase with m1 and m2. At the second resonance fre-
quency the displacements of all the masses undergo a phase shift of 180∘ with respect to the applied
force as they pass from positive (negative) infinity to negative (positive) infinity.

As frequency increases between the second and third resonance frequencies, a similar pattern
to that between the first and second resonance frequencies occurs for m1 resulting in another
anti-resonance frequency for this mass. However, there are no further anti-resonance frequencies
for masses m2 and m3.

The more conventional way of plotting FRFs is in terms of modulus and phase, and these
are shown in the centre and bottom rows of Figure 8.2, respectively. Note that the modulus is
plotted on a logarithmic scale, so that the resonances and anti-resonance frequencies can be
clearly seen. In fact, for a measurement to determine the FRF which contains both resonances
and anti-resonances, the measurement system must be capable of capturing data over a very large
dynamic range, especially when the damping is light. This can be a challenging situation. In each
graph of the second two rows of Figure 8.2, two plots are shown. One is the FRF for an undamped
system, which can be compared directly with the first row in the figure and the other is for a system
with the same mass and stiffness, but with a small amount of damping added (black line). It should
be further noted that unwrapped phase is plotted, as this gives the actual phase rather than the
phase restricted between −180∘ and +180∘. The moduli have the classic shapes found in measured
data, clearly showing the dynamic behaviour, influenced by the resonance and anti-resonance fre-
quencies. The structure of the point receptance, in terms of alternate resonance and anti-resonance
frequencies, is a feature of the point receptance of all vibrating systems. However, this is not a
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feature of a transfer receptance. There may or may not be anti-resonance frequencies depending
upon the specific properties of the system. In the example shown in Figure 8.2, there is a single
anti-resonance in X2∕F1, but none in X3∕F1. The effect of damping on the FRFs can be clearly
seen in Figure 8.2. In the modulus plots, it can be seen that damping has the effect of reducing
the response at the resonance frequencies, as demonstrated for an SDOF system in Chapter 2. It
also has the effect of increasing the response (from zero) at the anti-resonance frequencies. In the
phase plots it has the effect of removing the sharp corners evident in the undamped case. Note
that in the phase plots, the resonance frequencies occur at phase angles of −90∘, −270∘, and −450∘
which are at an angle of −90∘ less integer multiples of 180∘, and the anti-resonance frequencies
occur at −90∘. These features are also common to any linear, lightly damped vibrating system.

MATLAB Example 8.1

In this example, the FRFs of a 3DOF system are plotted showing the behaviour of point and
transfer receptances.

clear all

%% Parameters
m1=1;m2=1;m3=1; % [kg]
k1=1e4;k2=1e4;k3=1e4;k4=0*5e3; % [N/m]
M=[m1 0 0; 0 m2 0; 0 0 m3];
K=[k1+k2 -k2 0; -k2 k2+k3 -k3; 0 -k3 k3+k4];
C=1e-4*K;

%% Forced vibration
n=0;
for f=0:0.001:50;
w=2*pi*f;n=n+1;
An=inv(K-w.ˆ2*M+j*w*C);
An11(n)=An(1,1);
An21(n)=An(2,1);
An31(n)=An(3,1);

end

f=0:0.001:50;
figure
plot(f,20*log10(abs(An11)))
axis square; grid,axis([1,40,-130,-30])
xlabel('frequency (Hz)');
ylabel('amplitude (dB ref 1 m/N)');
figure
plot(f,180/pi*unwrap(angle(An11)))
axis square; grid; axis([1,40,-600,0])
xlabel('frequency (Hz)');
ylabel('phase (degrees)');
figure
plot(f,20*log10(abs(An21)))
axis square; grid; axis([1,40,-130,-30])
xlabel('frequency (Hz)');
ylabel('amplitude (dB ref 1 m/N)');
figure
plot(f,180/pi*unwrap(angle(An21)))
axis square; grid; axis([1,40,-600,0])

% masses
% stiffnesses
% mass matrix
% stiffness matrix
% damping matrix

% frequency vector

% calculate matrix of FRFs
% point receptance
% transfer receptance
% transfer receptance

% FRF plots

(Continued)
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MATLAB Example 8.1 (Continued)
xlabel('frequency (Hz)');
ylabel('phase (degrees)');
figure
plot(f,20*log10(abs(An31)))
axis square; grid; axis([1,40,-130,-30])
xlabel('frequency (Hz)');
ylabel('amplitude (dB ref 1 m/N)');
figure
plot(f,180/pi*unwrap(angle(An31)))
axis square; grid; axis([1,40,-600,0])
xlabel('frequency (Hz)');
ylabel('phase (degrees)');

Results
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a1 a3

X2
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MATLAB Example 8.1 (Continued)

Resonance frequencies (Hz) Anti-resonance frequencies (Hz)

f 1 f 2 f 3 a1 a2 a3
7.1 19.9 28.7 9.8 25.8 15.9

Comments:

1. This example gives similar results to those shown in Figure 8.2.
2. Exercises for the reader are to:

(a) calculate the point and transfer receptances when the excitation force is applied to
masses m2 and m3,

(b) explore the effects of changing the system parameters to see how they affect the
resonance and anti-resonance frequencies,

(c) set the stiffness k1 and damping c1 to zero, and to interpret the resulting FRFs, especially
at very low frequency,

(d) plot the real and imaginary parts of the point receptance as a function of frequency, and
compare these to that for an SDOF system. Why is the imaginary part always less than
or equal to zero?

8.2.2 Free Vibration

To discover the system properties that govern the dynamic behaviour of the MDOF system, free
vibration analysis is helpful. This is carried out by assuming an undamped system, as this gives the
underlying properties that govern the resonance (or natural) frequencies and the anti-resonance
frequencies. In this case, Eq. (8.1) simplifies to

Mẍ + Kx = 𝟎. (8.4)

Recall in Chapter 2 that the equation of motion for the free vibration of an undamped SDOF
system is given by mẍ + kx = 0, which can be written as ẍ + (k∕m)x = 0, and the square of the
angular natural frequency is given by 𝜔2

n = k∕m. Now, for an N DOF system there are N natural
frequencies. They can be determined from Eq. (8.4), which can be written as

ẍ + M−1Kx = 𝟎. (8.5)

Now, the squares of the N angular natural frequencies are given by the eigenvalues of the
matrix M−1K. These are easily calculated in MATLAB using the eig function. Accompanying
each eigenvalue is an eigenvector, which describes the relative motion of each of the masses
as they undergo vibration at a natural frequency. They are also easily calculated in MATLAB
using the eig function. These are called the Mode shapes of the system. Note the words ‘shapes’,
which means that the vector does not have any relationship to the actual amplitudes, rather
it gives the relative amplitudes and phases of the masses, so they can be scaled in different
ways. In MATLAB Example 8.2, each mode shape is scaled so that the maximum amplitude is
set to unity.



�

� �

�

176 8 Multi-Degree-of-Freedom (MDOF) Systems: Dynamic Behaviour

MATLAB Example 8.2

In this example, the natural frequencies and mode shapes of the 3DOF system in MATLAB
Example 8.1 are calculated.

clear all

%% Parameters
m1=1;m2=1;m3=1; % [kg]
k1=1e4;k2=1e4;k3=1e4;k4=0*5e3; % [N/m]
M=[m1 0 0; 0 m2 0; 0 0 m3];
K=[k1+k2 -k2 0; -k2 k2+k3 -k3; 0 -k3 k3+k4];

%% Undamped natural frequencies
[V W]= eig (inv(M)*K);

R=sqrt(W)/(2*pi);
V1=V(:,1)/max(abs(V(:,1)));
V2=V(:,2)/max(abs(V(:,2)));
V3=V(:,3)/max(abs(V(:,3)));

% See MATLAB example 8.1

% calculation of eigenvalues
and eigenvectors
% calculation of nat. freqs.
% calculation of the normalized
mode shapes

Results

k1 k2 k3

X1 X2 X3

m1 m2 m3

Undamped natural frequencies (Hz)

f 1 f 2 f 3

7.1 19.9 28.7

Mode shapes

𝛟1 =
⎧
⎪
⎨
⎪⎩

0.45
0.80
1.00

⎫
⎪
⎬
⎪⎭

𝛟2 =
⎧
⎪
⎨
⎪⎩

1.00
0.45
−0.80

⎫
⎪
⎬
⎪⎭

𝛟3 =
⎧
⎪
⎨
⎪⎩

−0.80
1.00
−0.45

⎫
⎪
⎬
⎪⎭

Comment:

1. If the damping in the system is small, the undamped natural frequencies of the system are
almost the same as the resonance frequencies.

2. An exercise for the reader is to determine the natural frequencies and mode shapes for the
3DOF system with different masses and stiffnesses.

The mode shapes for the system determined in MATLAB Example 8.2 are drawn in Figure 8.3.
It can be seen that the phases between the masses are different for each natural frequency. For
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k1 k2 k3

mode 1, ��1 =

Node

Anti-node

X1 X2 X3

f1

f2

m1 m2 m3

mode 2, �2 = 0.45
1.00

–0.80

f3
mode 3, �3 = 1.00

–0.80

–0.45

0.80
0.45

1.00

Figure 8.3 Mode shapes of the 3DOF system where the masses are all equal to 1 kg, and the stiffnesses
are all equal to 1× 104 N/m.

example, all the masses move in-phase with each other at the first natural frequency, but at the
second and third natural frequencies, two masses move in-phase with each other and the remaining
mass moves in anti-phase. The relative displacement amplitudes of each mass are different for each
natural frequency, and the motion of each mass at a natural frequency is called an anti-node. If there
is a phase difference between the masses at a natural frequency, then there is at least one point on
the structure that is motionless at this frequency. This point is called a node. It is evident that there
are no nodes for the first natural frequency, a single node for the second natural frequency, and two
nodes for the third natural frequency.

8.2.3 Resonance and Anti-resonance Frequencies

As shown in MATLAB Example 8.2, for a lightly damped system, the resonance frequencies can
be determined approximately by simply calculating the undamped natural frequencies of the sys-
tem. The anti-resonance frequencies can be estimated in a similar way. For the chain-like sys-
tem shown in Figure 8.1, the undamped natural frequencies are calculated for sub-systems of
the original system. To determine which sub-system to use, the displacement of the mass, which
has the anti-resonance in the FRF is set to zero, i.e. attached to ground. An example of this is
shown in Figure 8.4, and in MATLAB Example 8.3. The system in Figure 8.2 is considered. For the
point receptance, in which the force is applied to m1, this position is attached to ground, and the
undamped natural frequencies of the system to the right of the excitation point are calculated using
the method shown in MATLAB Example 8.2. The undamped natural frequencies of the subsystem
are the anti-resonance frequencies of the point receptance of the original undamped system. These
are approximately the same as the anti-resonance frequencies of the original damped system, if
the damping is small. To determine the anti-resonance frequency in the transfer receptance X2/F1,
mass m2 is grounded and the natural frequency of the sub-system to the right of m2 is calculated.
This is illustrated in Figure 8.4 and is calculated in MATLAB Example 8.3.
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X2
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f

Point receptance Transfer receptance
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F1 F1
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f3 f3

f2

f1

m3 m3m2

m1 m2 m3

f1,  f2, and f3 are the natural frequencies of this system

a1 and a2 are the natural

frequencies of this system

Figure 8.4 Relationship between resonance and anti-resonance frequencies and the free vibration of
undamped sub-systems of a 3DOF system.

MATLAB Example 8.3

In this example, the resonance and anti-resonance frequencies of the 3DOF system in MATLAB
Example 8.1 are calculated.

clear all

%% Parameters
m1=1;m2=1;m3=1; % [kg]
k1=1e4;k2=1e4;k3=1e4;k4=0*5e3; % [N/m]
M=[m1 0 0; 0 m2 0; 0 0 m3];
K=[k1+k2 -k2 0; -k2 k2+k3 -k3; 0 -k3 k3+k4];

% See MATLAB example 8.1

(Continued)
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MATLAB Example 8.3 (Continued)
%% Undamped natural frequencies
[V W]= eig (inv(M)*K);
f123=sqrt(W)/(2*pi)

%% Anti-resonance frequencies X1/Fe1
M=[m2 0; 0 m3];
K=[k2+k3 -k3; -k3 k3];
[V1 W1]= eig (inv(M)*K);
a12=sqrt(W1)/(2*pi)

%% Anti-resonance frequencies X2/Fe1
W2=(k3)/m1;
a3=sqrt(W2)/(2*pi)

% calculation of eigenvalues
% calculation of nat. freqs.

% mass matrix
% stiffness matrix
% calculation of eigenvalues
% calculation of anti-resonance frequencies

% calculation of square of nat. freq.
% calculation of anti-resonance frequency

Results

k1 k3k2

c1 c2 c3

F1

X1 X2 X3

m1 m2 m3

X1

F1

X2

F1

f1 f1
f2 f2

f3 f3

a1

a2

a3
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Frequency (Hz)
10 20 30 40

Frequency (Hz)

Resonance frequencies (Hz) Anti-resonance frequencies (Hz)

f 1 f 2 f 3 a1 a2 a3
7.1 19.9 28.7 9.8 25.8 15.9

Comments:

1. The system is split into the sub-systems shown in Figure 8.4 to calculate the anti-resonance
frequencies. The resonance frequencies are also estimated from the undamped natural fre-
quencies of the system.

2. An exercise for the reader is to calculate the anti-resonance frequencies of the point and
transfer receptances of the system when the excitation force is applied to masses m1 or m2.
Try to explain the physics that governs this behaviour.
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A particular situation occurs for an FRF of an MDOF system if the measurement position and/or
the excitation position coincide with a nodal point. In a lumped parameter system, such as that
considered in this chapter, this coincidence occurs at the position of a mass. This situation does
not occur for the system shown in Figure 8.2, so an alternative system is considered to illustrate the
effect. It is shown at the top of Figure 8.5, and is the same as the previous example but with a spring
connected between mass m3 and the ground. The mode shapes for this system are also shown in
Figure 8.5. It should be noted that the system is now symmetric, and the central mass is coincident
with a node of the second natural frequency. The behaviour of this system in terms of the modulus
of all the FRFs is shown at the bottom of Figure 8.5. The elements of the receptance matrix shown
at the top right of Figure 8.5 are plotted. There are several points to be noted from this figure:

f1 f2 f3 f1 f2 f3f1 f2 f3

k1

c1 c4c3c2

k2 k3 k4

log

f

log
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f1

f2

f3

X3

F2 F3
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X2 H21 H22 H23 F2

X3 H31 H32 H33 F3

T
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=

mode 1, ��1 =  1/  2  1  1/  2

T
mode 3, �3 =  –1/  2  1  –1/  2

T
mode 2, �2 =  1  0  –1

Figure 8.5 Point and transfer receptances of a symmetric 3DOF lumped parameter system.
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1. Because the system is symmetric H11 = H33 and H12 = H32.
2. Because of reciprocity H12 = H21, H13 = H31, and H23 = H32.
3. There is a nodal point at the position of the central mass for the second natural frequency. Thus,

if an FRF involves either a force being applied to this mass or the displacement of this mass being
measured, then the resonance corresponding to the second natural frequency is not evident.

4. If the force and displacement are measured on the central mass, i.e. H22, then an anti-resonance
is evident instead of a resonance at the second natural frequency.

8.2.4 Modal Decomposition

The matrix equation of motion for forced vibration of an MDOF system is given by Eq. (8.1).
Although this formulation can be used to determine the FRFs of the system as shown above,
Eq. (8.1) can be manipulated to obtain greater insight. Furthermore, transformation to the time
domain to obtain the IRFs can be achieved analytically for each mode of vibration. First, note
that Eq. (8.1) is a vector–matrix formulation of N-coupled second-order differential equations. The
equations are coupled because the stiffness and damping matrices have off-diagonal terms. It is
possible to decouple these equations so that there are P separate equations, one for each mode
of vibration. Note that in the MDOF case considered here, the number of modes included in the
model is the same as the number of DOF, i.e. N = P. However, this is not always the case, for
example in distributed rather than lumped parameter systems, as discussed in Section 8.3. Decou-
pling the equations of motion is possible because undamped vibration modes are orthogonal, i.e.
they vibrate independently of each other. In general, for a damped system this is not possible, but
a similar approach can be applied for a system where the damping matrix is a linear combination
of the mass and stiffness matrices, i.e.

C = 𝛼M + 𝛽K, (8.6)

where 𝛼 and 𝛽 are constants. This type of damping is called Rayleigh or proportional damping
(Ewins, 2000). It is evident that the damping matrix for the system shown in Figure 8.1 only has
the form for Rayleigh damping if 𝛼 = 0, and this is assumed henceforth.

The process of transforming a set of coupled equations to a set of uncoupled equations is a stan-
dard linear algebra problem and is extremely useful in structural dynamics. The procedure can be
found in many elementary texts, for example (Tse et al., 1978). Eq. (8.1) is transformed using the
matrix of eigenvectors (or mode shapes as discussed in Section 8.2.2), given by

𝚽 =
[
𝛟1 𝛟2 · · · 𝛟P

]
. (8.7)

The relationship between the physical displacement vector x and the modal displacements q is
given by

x = 𝚽q. (8.8)

Substituting for x in Eq. (8.1) results in

M𝚽q̈ + C𝚽q̇ + K𝚽q = f. (8.9)

Pre-multiplying Eq. (8.9) with the transpose of the matrix of mode shapes, gives

𝚽TM𝚽q̈ +𝚽TC𝚽q̇ +𝚽TK𝚽q = 𝚽Tf, (8.10)

which can be written as,

M̃q̈ + C̃q̇ + K̃q = g, (8.11)



�

� �

�

182 8 Multi-Degree-of-Freedom (MDOF) Systems: Dynamic Behaviour

where the modal mass, stiffness, and damping matrices are given by

M̃ = 𝚽TM𝚽 =

⎡
⎢
⎢
⎢
⎢⎣

m̃1 0 · · · 0
0 m̃2 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · m̃P

⎤
⎥
⎥
⎥
⎥⎦

, K̃ = 𝚽TK𝚽 =

⎡
⎢
⎢
⎢
⎢⎣

k̃1 0 · · · 0
0 k̃3 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · k̃P

⎤
⎥
⎥
⎥
⎥⎦

, C̃ = 𝚽TC𝚽 =

⎡
⎢
⎢
⎢
⎢⎣

c̃1 0 … 0
0 c̃2 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · c̃P

⎤
⎥
⎥
⎥
⎥⎦

,

and the modal force and modal displacement vectors are given by g = 𝚽Tf =
{

g1 g2 · · · gP
}T

and q = 𝚽−1x =
{

q1 q2 · · · qP
}T ; m̃p, k̃p, and c̃P are the modal mass, modal stiffness, and

modal damping of the p-th mode, respectively. The damping ratio of the p-th mode is given by
𝜁p = c̃P∕(2

√
m̃pk̃p). The fundamental difference between the description of an MDOF system,

in terms of its physical coordinates, and the modal description of the system is illustrated in
Figure 8.6.

If harmonic excitation is assumed such that g = gej𝜔t where g =
{

G1 G2 · · · GP

}T
, in which

Gp = 𝛟T
p f is the amplitude of the p-th modal force, and q =

{
Q1 Q2 · · · QP

}T
, in which Qp is the

modal displacement amplitude of the p-th mode, Eq. (8.11) becomes

q = H̃g, (8.12)

where H̃ = [K̃ − 𝜔2M̃ + j𝜔C̃]−1 = diag(H̃1, H̃2,… , H̃P), in which H̃p = [1∕(k̃p − 𝜔2m̃p + j𝜔c̃p)].
Note that H̃ is a diagonal matrix unlike H in Eq. (8.3). Now, the relationship between the vector
of physical complex displacement amplitudes and the complex modal displacement amplitudes is
given by

x = 𝚽q, (8.13)

and the relationship between the complex modal force amplitudes and the physical complex force
amplitudes applied to each mass is given by

g = 𝚽Tf. (8.14)

fe1(t)

g1(t)

q1(t) q2(t) qP(t)

k1 k2 kP cPc1 c2

g2(t) gP(t)

fe2(t) feN(t)
k1 k2 kN

x1(t) x2(t) xN(t)

m2

c2c1

m1 mN

m2m1 mP

cN

Physical domain

Modal domain

~

~ ~ ~

~

~ ~ ~

~

Figure 8.6 Lumped parameter MDOF system in the physical and the modal domain.
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Equations (8.12–8.14) are combined to give

x = 𝚽H̃𝚽Tf. (8.15)

As H̃ is a diagonal matrix the receptance corresponding to the displacement of the n-th mass due
to a force applied to the l-th mass, can be written as a summation of the modal responses, given by

Xn

Fl

=
P∑

p=1

𝛟p(l)𝛟p(n)

k̃p − 𝜔2m̃p + j𝜔c̃p
, (8.16)

where 𝛟p(l) is the mode shape of the p-th mode at the l-th mass where the force is applied, and
𝛟p(n) is the mode shape of the p-th mode at the n-th mass where the displacement is measured.

To illustrate the modal decomposition of a vibrating system, the 3DOF system shown in Figure 8.5
is considered. Although nine FRFs are shown in that figure, there are only four distinct FRFs due
to reciprocity and symmetry of the system. These are shown in Figure 8.7 together with the FRFs in
terms of the individual modal responses. Note, that in all the plots, the response at each resonance
frequency, marked as f 1, f 2, and f 3, is dominated by a single mode of vibration. This is because
the natural frequencies are well-spaced, and the damping is relatively light. Note also that in the
FRFs that involve either the force being applied to the central mass, or the response of the central
mass is zero, i.e. |X2∕F2| and |X2∕F1|, then the second resonance frequency is not evident. In fact,
the second mode response is absent from these plots. This is because the numerator is zero for the
second mode, as the corresponding mode shape 𝛟2 has a value of zero at the position of the central
mass (i.e. it is a node), as shown in Figure 8.5. Thus, at the central mass position, this mode of
vibration is either not excited or is not observed. To analyse the plots in Figure 8.7 in more detail,
Eq. (8.16) is written as

Xn

Fl

=
P∑

p=1
H̃p𝛟p(l)𝛟p(n), (8.17)

which, for the point receptances simplifies to Xn∕Fn =
∑P

p=1 H̃p𝛟2
p(n). Further, for the purpose

of analysis it is assumed that the damping is set to zero. Each modal response is essentially the
response of an SDOF system weighted by 𝛟2

p(n). Note that 𝛟2
p(n) is positive, so for a point recep-

tance, the sign of each modal response is simply governed by the sign of H̃p. Recall from Chapter 2,
that below the resonance frequency, the receptance of an SDOF system is positive and is controlled
by the stiffness, and above the resonance frequency it is negative and is controlled by the mass.
Examining the moduli of the point receptances |X1∕F1| and |X2∕F2| in Figure 8.7, it can be seen
that the stiffness- and mass-dominated parts of the modal components of the FRF are labelled.
For |X1∕F1|, well below the first resonance frequency, all the modal responses are positive and
in-phase with each other, so they simply sum to give the overall FRF. Between the first and second
resonance frequencies the anti-resonance marked a1 occurs. This forms because the FRF of the first
mode changes sign (for the undamped case), as it has mass-like behaviour. This means that it is in
anti-phase with the combined stiffness characteristics of the second and third modes, so the sum of
these modal responses is zero at the anti-resonance frequency (for the undamped case). There is a
second anti-resonance frequency between the second and third modes of vibration, marked as a2.
As this occurs above the second resonance frequency, the FRF of the second mode has a mass-like
characteristic. The anti-resonance is thus formed when the sum of the combined mass characteris-
tics of the first and second modes is equal to the stiffness characteristic of the third mode. As they
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Figure 8.7 Modal decomposition of the different FRFs for the MDOF system in Figure 8.5.

have opposite sign, this is equal to zero in the undamped case, but as seen in Figure 8.7, this is
not the case, which is due to damping in the system as discussed previously. Concerning the point
receptance |X2∕F2| shown in Figure 8.7, it can be seen that it exhibits similar behaviour to |X1∕F1|,
but it appears to be a 2DOF system as the second mode does not feature in the FRF for the reasons
given above.
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To analyse the behaviour of the transfer receptances |X3∕F1| and |X2∕F1|, shown in the lower
part of Figure 8.7, it is helpful to study the mode shape matrix given by

𝛟1 𝛟2 𝛟3

𝚽 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1
2

− 1√
2

−1
2

1√
2

0 1√
2

1
2

1√
2

−1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

. (8.18)

Note that when the vectors of mode shapes are assembled into a matrix rather than when study-
ing them separately as in Figure 8.5, it is preferable to normalise them so that 𝚽TM𝚽 = I, where I
is the identity matrix. In this case, the mode shapes are generally called the mass-normalised mode
shapes. Note that the modal mass is then unity for each mode. Referring to Eq. (8.17), it can be
seen that the sign of the FRF for each mode is now also governed by the sign of 𝛟p(l)𝛟p(n), which
is dependent upon the position and particular mode as can be seen in Eq. (8.16). In the point recep-
tances discussed above, it was noted that the FRFs for each mode were all in-phase at frequencies
well below the first mode of vibration, and so summed to give the overall FRF. In the transfer recep-
tances shown in Figure 8.7, this is not the case, which can be seen by examining the form of the
mode shapes given in Eq. (8.18). From Figure 8.7, it can be seen that the response of the first mode
is greater than the overall response. For |X3∕F1|, this occurs because the modal response of the first
mode in this frequency region (for the undamped case) is positive, the modal response of the sec-
ond mode is negative, and the modal response of the third mode is positive. This is easily verified by
examining Eqs. (8.17) and (8.18). The behaviour for |X2∕F1| is similar to that for |X3∕F1|, but the
second mode does not feature in the FRF because it is not observed due to a nodal point for the sec-
ond mode occurring at the position of the central mass. Note that anti-resonance frequencies do not
occur in the transfer receptances, because the characteristics of each modal response do not have
the appropriate sign and amplitude required to give a zero in the FRF for an undamped system.

MATLAB Example 8.4

In this example, the FRFs of the 3DOF system in MATLAB Example 8.1 are decomposed into
modes.

clear all

%% Parameters
% (see MATLAB Example 8.1)

%% Modal matrices
[V W]=eig(inv(M)*K);
Mm=V'*M*V;Km=V'*K*V;Cm=V'*C*V;
zeta=Cm/(2*sqrt(Km*Mm))

%% Forced vibration
n=0;
for f=0:0.001:50
w=2*pi*f;n=n+1;
An=inv(K-w.ˆ2*M+j*w*C);
An11(n)=An(1,1);
An21(n)=An(2,1);
An31(n)=An(3,1);

% calculation of eigenvectors
% modal mass, stiff., and damping
% modal damping ratios

% frequency vector

% calculate matrix of FRFs
% point receptance
% transfer receptance
% transfer receptance

(Continued)
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MATLAB Example 8.4 (Continued)

% modal responses
Hm=inv(Km-wˆ2*Mm+j*w*Cm);
% mode 1
F=[1 0 0]';Q=[1 0 0; 0 0 0;0 0 0];
Xa=V*Q*Hm*V'*F;
% mode 2
Q=[0 0 0; 0 1 0;0 0 0];
Xb=V*Q*Hm*V'*F;
% mode 3
Q=[0 0 0; 0 0 0;0 0 1];
Xc=V*Q*Hm*V'*F;
% X1/F1
X11a(n)=Xa(1);X11b(n)=Xb(1);X11c(n)=Xc(1);
% X2/F1
X21a(n)=Xa(2);X21b(n)=Xb(2);X21c(n)=Xc(2);
% X3/F1
X31a(n)=Xa(3);X31b(n)=Xb(3);X31c(n)=Xc(3);
end

f=0:0.001:50;

%% Plot the results
figure
plot(f,20*log10(abs(An11)));hold on
plot(f,20*log10(abs(X11a)),'–');hold on
plot(f,20*log10(abs(X11b)),':');hold on
plot(f,20*log10(abs(X11c)))
axis square; grid; axis([0,40,-130,-30])
xlabel('frequency (Hz)');
ylabel('amplitude (dB ref 1 m/N)');

figure
plot(f,180/pi*(angle(X11a)),'–'); hold on
plot(f,180/pi*(angle(X11b)),':'); hold on
plot(f,180/pi*(angle(X11c)))
axis square; grid; axis([0,40,-200,200])
xlabel('frequency (Hz)');
ylabel('phase (degrees)');

figure
plot(f,20*log10(abs(An21)));hold on
plot(f,20*log10(abs(X21a)),'–');hold on
plot(f,20*log10(abs(X21b)),':');hold on
plot(f,20*log10(abs(X21c)))
axis square; grid; axis([0,40,-130,-30])
xlabel('frequency (Hz)');
ylabel('amplitude (dB ref 1 m/N)');

figure
plot(f,180/pi*(angle(X21a)),'–');hold on
plot(f,180/pi*(angle(X21b)),':');hold on
plot(f,180/pi*(angle(X21c)))
axis square; grid; axis([0,40,-200,200])
xlabel('frequency (Hz)');
ylabel('phase (degrees)');

figure
plot(f,20*log10(abs(An31)));hold on

% response of first mode in FRFs

% response of second mode in FRFs

% response of third mode in FRFs

% individual modal responses

% individual modal responses

% individual modal responses

% modulus

% phase

% modulus

% phase

% modulus

(Continued)
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MATLAB Example 8.4 (Continued)

plot(f,20*log10(abs(X31a)),'–');hold on
plot(f,20*log10(abs(X31b)),':');hold on
plot(f,20*log10(abs(X31c)))
axis square; grid; axis([0,40,-130,-30])
xlabel('frequency (Hz)');
ylabel('amplitude (dB ref 1 m/N)');

figure
plot(f,180/pi*(angle(X31a)),'–'); hold on
plot(f,180/pi*(angle(X31b)),':'); hold on
plot(f,180/pi*(angle(X31c)))
axis square; grid; axis([0,40,-200,200])
xlabel('frequency (Hz)');
ylabel('phase (degrees)');

% phase

Results
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MATLAB Example 8.4 (Continued)

Modal damping ratios

𝜁1 𝜁2 𝜁3

0.002 0.006 0.009

Comments:

1. This example gives similar results to that shown in Figure 8.2, but with the individual modal
contributions shown.

2. Exercises for the reader are to:
(a) calculate the point and transfer receptances when the excitation force is applied to

masses m1 and m2,
(b) explore the effects of changing the system parameters to see how they affect the modal

contributions.

8.2.5 Impulse Response Function (IRF)

As with the SDOF system discussed in Chapter 3, the impulse response function (IRF) of a system
can be determined by taking the IDFT of the corresponding double-sided FRF. However, there is not
a simple analytical formulation unless the FRF is written as a modal summation, as in Eq. (8.16). In
this case, because each mode has the form of an SDOF system multiplied by the constant𝛟p(l)𝛟p(n),
the IRF of the system can be written as sum of the IRFs of corresponding to each mode. This is
given by

h(t) =
P∑

p=1
Ap sin(𝜔d,pt), (8.19)

where Ap = 𝛟p(l)𝛟p(n)
m̃p𝜔d,p

e−𝜁p𝜔pt, 𝜔d,p = 𝜔p

√
1 − 𝜁2

p , 𝜔p =
√

k̃p

m̃p
, and 𝜁p = c̃p

2
√

m̃pk̃p

.

An example showing the modal components of the FRF of a 3DOF system together with
the IRF and its modal components are shown in Figure 8.8. The point receptance X1∕F1 is
considered. From the FRF, it can be seen that second and third modes are relatively highly
damped compared to the first mode, and thus the IRFs corresponding to these modes decay
away more rapidly compared to the IRF of the first mode. Examining the IRF, h(t) in the upper
right graph in Figure 8.8, it can be seen that it has a complicated waveform for the first part of
the IRF. This is because it is the sum of the IRFs for the three modes of vibration, and hence
has three frequency components. As time increases, the contribution of the second and third
modes to the IRF diminishes substantially, leaving only the first mode. Recall that the decay
rate of the p-th mode IRF depends on the value of 𝜁p𝜔p. Thus, the IRF of a highly damped,
higher-frequency mode decays more quickly than that of a lightly damped, lower-frequency
mode.
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Figure 8.8 FRF and IRF of an MDOF system together its modal components.

MATLAB Example 8.5

In this example, the IRFs of the 3DOF system in MATLAB Example 8.5 are calculated and
compared with the theoretical ones.

clear all

%% Parameters
% (see Matlab Example 8.1)
C=5e-4*K;

%% Modal matrices
[V W]=eig(inv(M)*K);
Mm=V'*M*V;Km=V'*K*V;Cm=V'*C*V;
zeta=Cm/(2*sqrt(Km*Mm));
R=sqrt(W);

% different damping values

% calculation of eigenvectors
% modal mass, stiff., and damping
% modal damping ratios
% undamped natural frequencies

(Continued)
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MATLAB Example 8.5 (Continued)

wd=R*sqrt(1-zeta(1,1)ˆ2);

%% Modal parameters
Mm1=Mm(1,1);Mm2=Mm(2,2);Mm3=Mm(3,3);
w1=R(1,1);w2=R(2,2);w3=R(3,3);
wd1=wd(1,1);wd2=wd(2,2);wd3=wd(3,3);
z1=zeta(1,1);z2=zeta(2,2);z3=zeta(3,3);

%% Forced vibration
fs=1000;df=0.001;dt=1/fs;n=0;
for f=0:0.001:fs/2
w=2*pi*f;n=n+1;
An=inv(K-w.ˆ2*M+j*w*C);
An11(n)=An(1,1);
An21(n)=An(2,1);
An31(n)=An(3,1);

% modal responses
Hm=inv(Km-wˆ2*Mm+j*w*Cm);
% mode 1
F=[1 0 0]';Q=[1 0 0; 0 0 0;0 0 0];
Xa=V*Q*Hm*V'*F;
% mode 2
Q=[0 0 0; 0 1 0;0 0 0];
Xb=V*Q*Hm*V'*F;
% mode 3
Q=[0 0 0; 0 0 0;0 0 1];
Xc=V*Q*Hm*V'*F;
% X1/F1
X11a(n)=Xa(1);X11b(n)=Xb(1);X11c(n)=Xc(1);
% X2/F1
X21a(n)=Xa(2);X21b(n)=Xb(2);X21c(n)=Xc(2);
% X3/F1
X31a(n)=Xa(3);X31b(n)=Xb(3);X31c(n)=Xc(3);
end

%% Calculation of IRFs
%% IRF corresponding to X1/F1
HH=An11;HH1=X11a;HH2=X11b;HH3=X11c;
[h h1 h2 h3]=IRF(fs,HH,HH1,HH2,HH3);
t=0:dt:(length(h)-1)*dt;
h11=h;h11a=h1;h11b=h2;h11c=h3;

A1=1/(Mm1*wd1)*exp(-z1*w1*t).*sin(wd1*t);
A2=1/(Mm2*wd2)*exp(-z2*w2*t).*sin(wd2*t);
A3=1/(Mm3*wd3)*exp(-z3*w3*t).*sin(wd3*t);

h11at=V(1,1)ˆ2*A1;
h11bt=V(1,2)ˆ2*A2;
h11ct=V(1,3)ˆ2*A3;
h11t=h11at+h11bt+h11ct;

%% IRF corresponding to X2/F1
HH=An21;HH1=X21a;HH2=X21b;HH3=X21c;
[h h1 h2 h3]=IRF(fs,HH,HH1,HH2,HH3);

% damped natural frequencies

% modal masses
% undamped natural frequencies
% damped natural frequencies
% modal damping ratios

% frequency and time parameters
% frequency vector

% calculate matrix of FRFs
% point receptance
% transfer receptance
% transfer receptance

% response of first mode

% response of second mode

% response of third mode

% individual modal responses

% individual modal responses

% individual modal responses

% function to calculate IRFs
% time vector
% IRFs - numerical

% part of first mode IRF
% part of second mode IRF
% part of third mode IRF

% first mode IRF - theory
% second mode IRF - theory
% third mode IRF - theory
% complete IRF - theory

% function to calculate IRFs

(Continued)
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MATLAB Example 8.5 (Continued)

h21=h;h21a=h1;h21b=h2;h21c=h3;

h21at=V(1,1)*V(2,1)*A1;
h21bt=V(1,2)*V(2,2)*A2;
h21ct=V(1,3)*V(2,3)*A3;
h21t=h21at+h21bt+h21ct;

%% IRF corresponding to X3/F1
HH=An31;HH1=X31a;HH2=X31b;HH3=X31c;
[h h1 h2 h3]=IRF(fs,HH,HH1,HH2,HH3);
h31=h;h31a=h1;h31b=h2;h31c=h3;

h31at=V(1,1)*V(3,1)*A1;
h31bt=V(1,2)*V(3,2)*A2;
h31ct=V(1,3)*V(3,3)*A3;
h31t=h31at+h31bt+h31ct;

%% Figures
figure
plot(t,h11);hold on
plot(t,h11t,'-k')
axis square; grid; axis([0,2,-7e-3,9e-3])
xlabel('time (s)');ylabel('IRF (m/Ns)')
figure
plot(t,h11a);hold on
plot(t,h11at,'-k')
axis square; grid; axis([0,2,-7e-3,9e-3])
xlabel('time (s)'); ylabel('Mode 1 IRF (m/Ns)')
figure
plot(t,h11b);hold on
plot(t,h11bt,'-k')
axis square; grid; axis([0,2,-7e-3,9e-3])
xlabel('time (s)'); ylabel('Mode 2 IRF (m/Ns)')
figure
plot(t,h11c);hold on
plot(t,h11ct,'-k')
axis square; grid; axis([0,2,-7e-3,9e-3])
xlabel('time (s)'); ylabel('Mode 3 IRF (m/Ns)')

function [h h1 h2 h3]=IRF(fs,HH,HH1,HH2,HH3)
Hd=[HH fliplr(conj(HH))];
H=Hd(1:length(Hd)-1);
h=fs*ifft(H);

H1d=[HH1 fliplr(conj(HH1))];
H1=H1d(1:length(H1d)-1);
h1=fs*ifft(H1);

H2d=[HH2 fliplr(conj(HH2))];
H2=H2d(1:length(H2d)-1);
h2=fs*ifft(H2);

H3d=[HH3 fliplr(conj(HH3))];
H3=H3d(1:length(H3d)-1);
h3=fs*ifft(H3);

end

% IRFs - numerical

% first mode IRF - theory
% second mode IRF - theory
% third mode IRF - theory
% complete IRF - theory

% function to calculate IRFs
% IRFs - numerical

% first mode IRF - theory
% second mode IRF - theory
% third mode IRF - theory
% complete IRF - theory

% the figures are plotted
for the IRF corresponding
to X1/F1. To plot the other IRFs
change the code. For example, insert
h21 instead.

(Continued)
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MATLAB Example 8.5 (Continued)

Results

8

h11(t) h12(t) h13(t)

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 20 0.5 1 1.5 20 0.5 1
Time (s) Time (s) Time (s)

1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2

×10–3

×10–3 ×10–3 ×10–3

×10–3 ×10–3
×10–3

×10–3×10–3×10–3

×10–3 ×10–3

IR
F

 (
m

/N
s)

M
o

d
e 

1
 I

R
F

 (
m

/N
s)

M
o

d
e 

2
 I

R
F

 (
m

/N
s)

M
o

d
e 

3
 I

R
F

 (
m

/N
s)

(Continued)



�

� �

�

8.3 Continuous Systems 193

MATLAB Example 8.5 (Continued)

Comments:

1. This example gives the IRFs corresponding to the FRFs shown in MATLAB Example 8.4.
2. Exercises for the reader are to:

(a) calculate the IRFs when the excitation force is applied to masses m1 and m2,
(b) attach an extra spring to the right-hand mass as in Figure 8.5 and calculate the IRFs of

the system,
(c) calculate the IRFs by numerically integrating the equations of motion using the

Runge–Kutta method as described in Appendix D and compare them with the IRFs
calculated using the modal approach.

8.3 Continuous Systems

Structures that have distributed mass and stiffness are generally called continuous systems.
Because they are not composed of lumped elements, such as mass, stiffness, and damping, they
are described by partial differential equations (PDEs), which are functions of space and time,
rather than ordinary differential equations (ODEs), that have only been functions of time. It was
shown previously in this chapter that the number of natural frequencies and corresponding mode
shapes for a lumped parameter system are dependent upon the number of DOF. In a continuous
system there are an infinite number of DOF, and hence an infinite number of natural frequencies.
However, any model of a continuous system is only valid over a finite frequency range and thus
the model will have a finite number of natural frequencies. In this section two continuous systems
are considered, which are shown in Figure 8.9. One is a slender rod, in which longitudinal or
in-plane waves propagate, and the axial displacement is given by u(x, t). The other is a slender
beam in which bending or flexural waves propagate, and the lateral displacement is given by
w(x, t). Both structures are homogeneous and uniform, so there is no coupling between longitu-
dinal and bending motion. Of course, there are many other continuous systems, such as strings,
shafts, membranes, and plates (Leissa and Qatu, 2011), but they are not covered in this book.
However, the treatment applied to the rod and the beam can be applied to the other systems.

8.3.1 Rod

The equation of motion for a force-excited rod is given by Tse et al. (1978)

ES𝜕
2u(x, t)
𝜕x2

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

stiffness force
per unit length

− 𝜌S𝜕
2u(x, t)
𝜕t2

⏟⏞⏞⏞⏟⏞⏞⏞⏟

inertia force
per unit length

= −fe(x, t)
⏟⏟⏟

force per
unit length

(8.20)

where E, S, and 𝜌 are Young’s modulus, cross-sectional area, and density of the rod, respectively.
Note that unlike the ODEs discussed hitherto in this book, Eq. (8.20) is not a balance of forces.
Rather, it is a balance of forces per unit length so f e(x, t) is not a force applied at a point, it is a
distributed axial force. The axial displacement of the rod u(x, t) is a function of both space and
time. The solution to Eq. (8.20) can be written as an infinite sum of modal responses, given by

u(x, t) =
∞∑

p=1
𝜙p(x)qp(t) (8.21)
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u (x, t)

w (x, t)

Rod

Beam

Figure 8.9 Two continuous systems – a rod undergoing axial vibration and a beam undergoing flexural or
bending vibration.

where 𝜙p(x) is the p-th mode shape, which is only a function of x, and qp(t) is the p-th modal
participation factor, which is a function of time. Note that an infinite sum of modes is required to
give the correct displacement solution because of the distributed mass and stiffness. Substituting
Eq. (8.21) into (8.20) results in

ES 𝜕2

𝜕x2

( ∞∑
p=1
𝜙p(x)qp(t)

)
− 𝜌S 𝜕

2

𝜕t2

( ∞∑
p=1
𝜙p(x)qp(t)

)
= −fe(x, t) (8.22a)

As the time and space dependency are restricted to separate variables, Eq. (8.22a) can be written
as an ODE to give

ES
∞∑

p=1

(
d2𝜙p(x)

dx2 qp(t)

)
− 𝜌S

∞∑
p=1

(
𝜙p(x)

d2qp(t)
dt2

)
= −fe(x, t) (8.22b)

The principle of the orthogonality of modes can be used to simplify Eq. (8.22b). Multiplying each
term by the q-th mode shape, 𝜙q(x), and integrating over the length l of the rod, results in

ES
∫

l

0

[
𝜙q(x)

∞∑
p=1

(
d2𝜙p(x)

dx2 qp(t)

)]
dx − 𝜌S

∫

l

0

[
𝜙q(x)

∞∑
p=1

(
𝜙p(x)

d2qp(t)
dt2

)]
dx

= −
∫

l

0
[𝜙q(x)fe(x, t)]dx (8.23)

Now, the orthogonality conditions are ∫ l
0𝜙q(x)𝜙p(x)dx = 0 and ∫

l
0

d2𝜙q(x)
dx2 𝜙p(x)dx = 0, so Eq. (8.23)

becomes

m̃pq̈p(t) + k̃pqp(t) = gp(t) (8.24)

where the overdot represent differentiation with the respect to time, and

m̃p = 𝜌S
∫

l

0
𝜙2

p(x)dx

is the modal mass,

k̃p = −ES
∫

l

0
𝜙p(x)

d2𝜙p(x)
dx2 dx

is the modal stiffness,

gp(t) =
∫

l

0
𝜙p(x)fe(x, t)dx

is the modal force.
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Damping can be added to each mode by including a damping term to Eq. (8.24). Dividing
Eq. (8.24) by the modal mass and adding damping in the form of a modal damping ratio 𝜁p
results in

q̈p(t) + 2𝜁p𝜔pq̇p + 𝜔2
pqp(t) =

gp(t)
m̃p

(8.25)

If a point excitation force is applied at x1 then f e(x1, t) = f e(t)𝛿(x − x1), where f e(t) is the time
history of the excitation force, which has units of N, and 𝛿(x − x1) is a delta function at x = x1 and
has units of 1/m, then

gp(t) =
∫

l

0
𝜙p(x)fe(t)𝛿(x − x1)dx. (8.26)

Using the sifting property of the delta function described in Appendix E, Eq. (8.26) becomes
gp(t) = 𝜙p(x1)f e(t), so Eq. (8.25) becomes

q̈p(t) + 2𝜁p𝜔pq̇p + 𝜔2
pqp(t) =

𝜙p(x1)fe(t)
m̃p

(8.27)

The modal participation factor qp(t) can thus be determined from Eq. (8.27), which can then be
substituted into Eq. (8.21) to give the displacement response u(x, t). If the force applied at x = x1
is harmonic with the form fe(t) = F(x1)ej𝜔t and the displacement response u(t) = U(x2)ej𝜔t is mea-
sured at x = x2, the receptance (displacement response per unit input force) is given by

U(x2)

F(x1)
=

∞∑
p=1

𝜙p(x1)𝜙p(x2)

m̃p
(
𝜔2

p − 𝜔2 + j2𝜁p𝜔𝜔p
) , (8.28)

Note the similarity between the receptance for a continuous system and the receptance for a
lumped parameter system. The key difference is that the number of modes for a continuous sys-
tem is infinite. Note also, the modes shapes are given by continuous functions and can thus be
evaluated at any position in the rod. As with the mass and stiffness, the damping is assumed to
be distributed throughout the structure and it is convenient to add damping to each mode as dis-
cussed above. For the receptance of the free–free rod, there is no grounded spring to determine
its equilibrium position. This means that if the free–free rod is impacted it will not return to its
previous at-rest position. To account for this, an additional term needs to be added to Eq. (8.28),
which is called a rigid-body mode. It occurs at a natural frequency of zero, i.e. 𝜔p = 0, and is given
by U(x2)∕F(x1)

|||𝜔p=0
= 1∕(−m̃p𝜔

2). The way in which the natural frequencies and mode shapes are
determined is discussed in the next subsection.

8.3.1.1 Natural Frequencies and Mode Shapes
As with the MDOF system, the natural frequencies and mode shapes are determined by considering
free vibration. Thus, Eq. (8.20) becomes

ES𝜕
2u(x, t)
𝜕x2 − 𝜌S𝜕

2u(x, t)
𝜕t2 = 0 (8.29)

Assuming a harmonic displacement of the form u(x, t) = U(x)ej𝜔t results in

U′′(x) + 𝛽2
RU(x) = 0 (8.30)

where the dash denotes differentiation with respect to x, and 𝛽R = 𝜔/cR is the longitudinal
wavenumber in which cR =

√
E∕𝜌 is the wave speed. The displacement at any point in the rod
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Table 8.1 Natural frequencies and mode shapes for some rod configurations.

Configuration
(a) Frequency equation
(b) Mode shapes

U (0) = 0 U (l) = 0
l

(a) sin(𝛽R,pl) = 0 ⇒ 𝛽R,pl = p𝜋
(b) 𝜙p(x) =

√
2 sin(p𝜋x∕l)

U′ (0) = 0 U′ (l) = 0 (a) sin(𝛽R,pl) = 0 ⇒ 𝛽R,pl = p𝜋
(b) 𝜙p(x) =

√
2 cos(p𝜋x∕l)

rigid body mode, 𝜙0(x) = 1

U (0) = 0 U′ (l) = 0 (a) cos(𝛽R,pl) = 0 ⇒ 𝛽R,pl = (p− 1/2)𝜋
(b) 𝜙p(x) =

√
2 sin((p − 1∕2)𝜋x∕l)

Natural frequency 𝜔p = 𝛽R,pl
(

E
𝜌l2

)1
2

; mode shape normalisation
∫

l

0
𝜙2

p(x)dx = l.

consists of a left-going and a right-going wave, and is given by

U(x) = Aej𝛽Rx + Be−j𝛽Rx (8.31)

where A and B are complex amplitudes of left- and right-going propagating waves, respectively,
which depend upon the boundary conditions. Three configurations are considered, which
are shown in Table 8.1. For a fixed boundary U(x) = 0 and for a free boundary U′(x) = 0. An
example of the method to determine the natural frequency and mode shape is illustrated below
for a fixed–fixed rod. It is left as an exercise for the reader to derive expressions for the natural
frequencies and mode shapes for the other two configurations.

Example – Fixed–Fixed Rod For a fixed left-hand boundary, U(0) = 0, so from Eq. (8.31), A + B = 0
or B = −A, thus U(x) = A

(
ej𝛽Rx − e−j𝛽Rx). For a fixed right-hand boundary U(l) = 0, so that ej𝛽Rl +

e−j𝛽Rl = 0, or sin(𝛽Rl) = 0. This means that 𝛽R, pl = p𝜋. Noting that 𝛽R, p =𝜔p/cR results in the expres-
sion for the p-th natural frequency, which is given by

𝜔p =
p𝜋
l

√
E
𝜌

(8.32)

At the p-th natural frequency, the displacement of the rod is given by Up(x) = |Cp| sin(p𝜋x∕l)
where |Cp| is a constant, the value of which is dependent upon a normalisation factor. If the modal
mass is set to be the mass of the rod, i.e. m̃p = 𝜌Sl, then the mode shape is normalised such that
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∫
l

0𝜙
2
p(x)dx = l. Now 𝜙p(x) = Up(x), so |Cp| =

√
2; therefore, for a fixed–fixed rod the mode shape is

given by

𝜙p(x) =
√

2 sin(p𝜋x∕l). (8.33)

The natural frequencies and modes shapes for a rod with three different boundary conditions are
given in Table 8.1.

8.3.1.2 Impulse Response Function (IRF)
The IRF of a continuous system can be calculated in the same way as for a lumped parameter MDOF
system. Once the modal parameters have been determined, the IRFs for each mode of vibration are
calculated, which are then summed to give the overall IRF as in Eq. (8.19). An example is shown
for the fixed–free rod shown in Table 8.1, for the force and displacement response at the free end.
The modal response is compared with the exact solution, which is given by Kinsler et al. (1982) as

Hexact(j𝜔) =
tan(𝛽Rl)

𝜔S
√
𝜌E
. (8.34)

The modal response is given by

H(j𝜔) = U(l)
F(l)

=
∞∑

p=1

𝜙2
p(l)

m̃p
(
𝜔2

p − 𝜔2 + j2𝜁p𝜔𝜔p
) , (8.35)

where m̃p = 𝜌Sl, 𝜙p(l) =
√

2, and 𝜔p = (p−1∕2)𝜋
l

√
E
𝜌

. The exact and approximate FRFs are shown
in the top part of Figure 8.10 for a wide frequency range. Note that to plot the exact FRF given in
Eq. (8.34) some damping must be included. This is done by using a material loss factor (structural
damping) 𝜂, so that Young’s modulus becomes complex, and is given by E(1+ j𝜂), (Nashif et al.,
1985). This means that the damping force is proportional to displacement, but is in-phase with the
velocity, whereas a viscous damping force is proportional to, and is in-phase with the velocity. The
relationship between the loss factor and the damping ratio that is commonly used is 𝜂 = 2𝜁 , which
is derived by assuming the same response at the resonance frequency for two SDOF systems, one of
which has viscous damping and the other has structural damping (Brennan and Ferguson, 2004).
Although the structural damping model is convenient to use in continuous structures, a minor
problem is that it causes a small amount of acausality (the system responds before it is impacted)
in the IRF. The modulus of the FRF and the IRF for the fixed–free rod is shown in Figure 8.10 for
two levels of damping. The graph in the upper left part of Figure 8.10 shows the FRF for a rod with
a modal damping ratio of 𝜁p = 0.01. It is calculated using Eqs. (8.34) and (8.35). Note that both the
modulus and frequency axes are logarithmic because the dynamic range of the FRF is very large as
it has both resonance and anti-resonance frequencies, and also the frequency range is very wide.
It can be seen that the FRF from the modal model gives a result that is very similar to that from
the exact model, provided that enough modes are included in the response. The corresponding
IRFs are shown in the lower left part of Figure 8.10. Again, it can be seen that the IRFs from both
models are similar, demonstrating that the acausality due to structural damping is small, at least
for 𝜁p = 0.01. There are some additional acausality issues for both models, however, due to the
rectangular window applied in the frequency domain. This is evident at the beginning of the IRF
which was discussed in detail in Chapter 4. It is unavoidable when using the IDFT to obtain an IRF
from an analytical FRF, but it can be minimised by using a high sampling frequency. Examination
of the IRF for the rod shows that its shape for the fixed–free rod is different to that for the 3DOF
lumped parameter system shown in Figure 8.8. This is because the natural frequencies for the rod
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fe (l, t)
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�p = 0.01 �p = 0.0001

Figure 8.10 FRF and IRF of a fixed–free rod.

are harmonically related, which is not the case for the 3DOF system. Closer examination of the
IRF for the fixed–free rod shows that at the beginning of the time history, the waveform tends
to a square-like wave, but as time increases it tends to a decaying sine wave, suggesting that the
responses due to the higher-order modes decay away rapidly leaving the first mode to dominate
the IRF towards the end of the time history. This also occurs in the IRF for the 3DOF system in
Figure 8.8, and is a general feature of most IRFs of structural systems.

To further investigate the shape of the IRF, a fixed–free rod with a modal damping ratio of
𝜁p = 0.0001 is considered. The FRF for this structure, calculated using only the modal model, is
shown in the upper right part of Figure 8.10. Note how the reduced damping affects the FRF at the
resonance and anti-resonance frequencies. The corresponding IRF for an undamped fixed–free
rod is given by

h(t) =
∞∑

p=1

𝜙2
p(l)

m̃p𝜔p
sin(𝜔pt). (8.36a)

Substituting for m̃p, 𝜙
2
p(l), and 𝜔p, and noting that 𝜔1 = 𝜋

2l

√
E
𝜌

, Eq. (8.36a) can be written as

h(t) = 4
𝜋

1
S
√
𝜌E

∞∑
p=1

1
(2p − 1)

sin((2p − 1)𝜔1t), (8.36b)
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which is the Fourier series representation of a square wave with amplitude 1∕(S
√
𝜌E). Thus, the

IRF for an undamped fixed–free rod is a square wave. This is because the natural frequencies occur
at odd multiples of the fundamental frequency i.e. 𝜔1, 𝜔3, 𝜔5, …, and the amplitudes of the cor-
responding modal IRFs have normalised amplitudes of 1, 1/3, 1/5, …. The IRF for a very lightly
damped fixed–free rod is compared with an approximation to a square wave in the lower right part
of Figure 8.10. It can be seen there is very good agreement between the two plots. This explains the
shape of the IRF directly after the impact for the more heavily damped rod shown in the lower left
part of Figure 8.10.

MATLAB Example 8.6

In this example, the transfer receptance FRF and corresponding IRF of a fixed–free rod are
calculated using the modal approach. The effects of changing the number of modes used in
the calculation are investigated.

clear all

%% Parameters
E=69e9; % [N/m2]
rho=2700; % [kg/m3]
l=10;b=0.02;d=0.01;S=b*d; % [m, m2]
z=0.01;n=2*z;
Ed=E*(1+j*n); % [N/m2]
m=rho*S*l; % [kg]

%% Modal solution
fs=20000;df=0.001;dt=1/fs;
f=0.001:0.01:fs/2;
w=2*pi*f;
for n=1:40
x=l; % [m]
phi1=sqrt(2)*sin((n-1/2)*pi*x/l);
x=0.5*l; % [m]
phi2=sqrt(2)*sin((n-1/2)*pi*x/l);
wn=(n-1/2)*pi/l*sqrt(E/rho); % [rad/s]
Ht(n,:)=phi1*phi2./(m*(wnˆ2-w.ˆ2+j*2*w*wn*z));

end
Htt=sum(Ht); % [m/N]

%% IRF
Htd=[Htt fliplr(conj(Htt))];
Hm=Htd(1:length(Htd)-1);
h=fs*ifft(Hm); % [m/Ns]
h=circshift(h,100);
t=0:dt:(length(h)-1)*dt; % [s]

%% Plot the results
figure
semilogx(f,20*log10(abs(Htt)),'linewidth',3)
axis square; grid; axis([10,10000,-180,-90])
xlabel('frequency (Hz)')
ylabel('|FRF| (dB ref 1m/N)')

figure
plot(t,h,'linewidth',3)
axis square; grid; axis([0,0.1,-4e-4,4e-4])
xlabel('time (s)'); ylabel('IRF (m/Ns)')

% Youngs modulus of aluminium
% density of aluminium
% geometrical parameters
% damping ratio and loss factor
% complex Young's modulus
% mass of the rod

% frequency parameters
% frequency vector

% 40 modes (can change this number)
% force position
% mode shape at force position
% response position
% mode shape at response position
% natural frequencies
% FRF for each mode

% overall FRF

% form the double-sided spectrum
% set the length of the FRF
% calculation of the IRF
% circular shift of the IRF
% time vector

% FRF

% IRF

(Continued)
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MATLAB Example 8.6 (Continued)

Results

l
fe(l, t)

u (l 2, t)l 2

10 Modes 40 Modes
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Comments:

1. Compare the difference between the shape of waveform for the IRF corresponding to the
transfer receptance calculated in this example with the IRF corresponding to the point
receptance given in Figure 8.10. Try to think of a reason why this difference occurs.

2. Note the way in which the reduction in the number of modes changes the shape of the
waveform from being rectangular to triangular at the beginning of the IRF. Note also that
it does not appreciably change the shape of the waveform as time increases.

3. An exercise for the reader is to investigate what happens to the IRF, when the:
(a) geometrical parameters are changed,
(b) damping is changed,
(c) number of modes is reduced,
(d) sampling frequency (the frequency range of the FRF) is changed.
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8.3.2 Beam

The equation of motion for a force-excited beam is also a PDE because of its distributed mass and
stiffness. However, its stiffness force has a different form to that of rod, as it is based on bending
stiffness, which is related to the bending moment rather than the shear force, and this results in a
fourth-order, instead of a second-order differential equation. An Euler–Bernoulli beam is consid-
ered, in which the shear stiffness is assumed to be infinite and rotational inertia is neglected. For
a rectangular beam, the equation is valid in the frequency range where the bending wavelength is
greater than about 10 times the thickness of the beam. The equation of motion is given by Tse et al.
(1978)

EI𝜕
4w(x, t)
𝜕x4

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

stiffness force
per unit length

+ 𝜌S𝜕
2w(x, t)
𝜕t2

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

inertia force
per unit length

= fe(x, t)
⏟⏟⏟

force per
unit length

(8.37)

where E, I, 𝜌, and S are Young’s modulus, second moment of area, density, and cross-sectional
area of the beam, respectively. Note that as with the beam, Eq. (8.37) is a balance of forces per
unit length so that f e(x, t) is not a force applied at a point, it is a distributed lateral force. The
lateral displacement of the beam w(x, t) is a function of both space and time. The transformation
of Eq. (8.37) to an ODE follows the same procedure as for the rod. The lateral displacement can be
written as an infinite sum of modal responses, given by

w(x, t) =
∞∑

p=1
𝜙p(x)qp(t) (8.38)

where 𝜙p(x) is the p-th bending mode shape and qp(t) is the p-th modal participation factor. Sub-
stituting Eq. (8.38) into (8.37) results in

EI 𝜕
4

𝜕x4

( ∞∑
p=1
𝜙p(x)qp(t)

)
+ 𝜌S 𝜕

2

𝜕t2

( ∞∑
p=1
𝜙p(x)qp(t)

)
= fe(x, t) (8.39a)

As the time and space variables are separable, Eq. (8.39a) can be written as an ODE to give

EI
∞∑

p=1

(
d4𝜙p(x)

dx4 qp(t)

)
+ 𝜌S

∞∑
p=1

(
𝜙p(x)

d2qp(t)
dt2

)
= fe(x, t) (8.39b)

Multiplying each term by the q-th mode shape, 𝜙q(x), and integrating over a point length l of the
beam, results in

EI
∫

l

0

[
𝜙q(x)

∞∑
p=1

(
d4𝜙p(x)

dx4 qp(t)

)]
dx + 𝜌S

∫

l

0

[
𝜙q(x)

∞∑
p=1

(
𝜙p(x)

d2qp(t)
dt2

)]
dx

=
∫

l

0
[𝜙q(x)fe(x, t)]dx (8.40)

Now, the orthogonality conditions are ∫ l
0𝜙q(x)𝜙p(x)dx = 0 and ∫

l
0

d4𝜙q(x)
dx4 𝜙p(x)dx = 0, so Eq. (8.40)

becomes

m̃pq̈p(t) + k̃pqp(t) = gp(t) (8.41)

where

m̃p = 𝜌S
∫

l

0
𝜙2

p(x)dx
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is the modal mass,

k̃p = EI
∫

l

0
𝜙p(x)

d4𝜙p(x)
dx4 dx

is the modal stiffness,

gp(t) =
∫

l

0
[𝜙p(x)fe(x, t)]dx

is the modal force.
As with the rod, damping can be added to each mode. Moreover, if a point lateral excitation force

is applied at x1 then gp(t) = 𝜙p(x1)f e(t), where f e(t) is the time history of the point lateral force
applied, so Eq. (8.41) becomes

q̈p(t) + 2𝜁pq̇p + 𝜔2
pqp(t) =

𝜙p(x1)fe(t)
m̃p

(8.42)

From this, the modal participation factor qp(t) can be determined, which can then be substituted
into Eq. (8.38) to give the displacement response w(x, t). If the lateral force applied at x = x1 is
harmonic with the form fe(t) = Fej𝜔t and the displacement response w(t) = W(x2)ej𝜔t is measured
at x = x2, the receptance is given by

W(x2)

F(x1)
=

∞∑
p=1

𝜙p(x1)𝜙p(x2)

m̃p
(
𝜔2

p − 𝜔2 + j2𝜁p𝜔𝜔p
) . (8.43a)

Note the similarity between the receptance for a beam and a rod. The form of the equations is
exactly the same, with the differences being in the modal parameters of natural frequencies, mode
shapes, modal mass, and modal damping, which are discussed in the next subsection. Unlike a
rod, which has only axial forces and axial displacements, a beam can be excited by a moment with
complex amplitude M and also a rotation with amplitude W ′ can be measured. The receptances
in terms of these quantities can be determined in a very simply way by considering the spatial
derivative of the mode shapes, which is denoted by (•)′ = d(•)/dx. The results are given by

W ′(x2)

F(x1)
=

∞∑
p=1

𝜙p(x1)𝜙′
p(x2)

m̃p
(
𝜔2 − 𝜔2

p + j2𝜁p𝜔𝜔p
) , (8.43b)

W(x2)

M(x1)
=

∞∑
p=1

𝜙′
p(x1)𝜙p(x2)

m̃p
(
𝜔2 − 𝜔2

p + j2𝜁p𝜔𝜔p
) , (8.43c)

W ′(x2)

M(x1)
=

∞∑
p=1

𝜙′
p(x1)𝜙′

p(x2)

m̃p
(
𝜔2 − 𝜔2

p + j2𝜁p𝜔𝜔p
) . (8.43d)

8.3.2.1 Natural Frequencies and Mode Shapes
The natural frequencies and mode shapes are again determined by considering free vibration. In
this case the equation of motion is

EI𝜕
4w(x, t)
𝜕x4 + 𝜌S𝜕

2w(x, t)
𝜕t2 = 0 (8.44)

Assuming a harmonic displacement of the form w(x, t) = W(x)ej𝜔t results in

W ′′′′(x) − 𝛽4
BW(x) = 0 (8.45)
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where 𝛽B = 𝜔/cB is the bending wavenumber in which cB = (EI/𝜌S)1/4𝜔1/2 is the bending wave
speed. Note that for bending vibration the wave speed is a function of frequency, which is not
the case for the axial vibration of a rod. This means that high-frequency waves travel faster than
low-frequency waves. Such a system is called dispersive, because the envelope of a wave packet con-
taining a range of frequencies changes shape as it propagates along the beam (Cremer et al., 2005).
A physical explanation of this phenomenon can be found in (Brennan et al., 2016). The solution to
Eq. (8.45) is given by

W(x) = A1e𝛽Bx + A2e−𝛽Bx + A3ej𝛽Bx + A4e−j𝛽Bx (8.46a)

where A1 and A2 are the complex amplitudes of evanescent waves that are confined to within about
one wavelength of a discontinuity, and A3 and A4 are complex amplitudes of left- and right-going
propagating waves, respectively. By collecting the wave types, Eq. (8.46a) can be written in terms
of hyperbolic and trigonometric functions as

W(x) = A sinh(𝛽Bx) + B cosh(𝛽Bx) + C sin(𝛽Bx) + D cos(𝛽Bx) (8.46b)

where A, B, C, and A are coefficients (which in this case are real numbers).
Four configurations are considered, which are shown in Table 8.2. For a pinned boundary at x= xb

the displacement and bending moment of the beam are zero, i.e. W(xb) = 0 and W ′′(xb) = 0. For a
fixed boundary the displacement and the slope of the beam are zero, i.e. W(xb) = 0 and W ′(xb) = 0.
For a free boundary the bending moment and shear force are zero, i.e. W ′′(xb) = 0 and W ′′′(xb) = 0.
An example of the method to determine the natural frequency and mode shape is illustrated below
for a pinned–pinned beam. It is left as an exercise for the reader to derive expressions for the natural
frequencies and mode shapes for the other configurations. Note, however, that at high frequencies
there can be issues in the numerical evaluation of the hyperbolic functions when calculating the
mode shapes. This can be addressed by reformulating the equation describing the beam displace-
ment in an appropriate manner (Gonçalves et al., 2018).

Example – Pinned–Pinned Beam For a pinned left-hand boundary, W(0) = 0 and W ′′(0) = 0, so from
Eq. (8.46b), B = D = 0. For a pinned right-hand boundary, W(l) = 0 and W ′′(l) = 0, which results
in A = 0, so sin(𝛽Bl) = 0. At the p-th natural frequency, the displacement of the beam is given
by W p(x) = Cp sin(p𝜋x∕l), where the value of Cp is dependent upon a normalisation factor. If the
modal mass is set to be the mass of the beam, i.e. m̃p = 𝜌Sl, then the mode shape is normalised
such that ∫ l

0𝜙
2
p(x)dx = l in the same way that it was for the rod, so the mode shape is given by

𝜙p(x) =
√

2 sin(p𝜋x∕l). The natural frequencies and modes shapes for a beam with four different
boundary conditions are given in Table 8.2. Note that the simply supported (pinned) beam is the
simplest case as the beam deflection can be described in terms of a trigonometric function. For all
the other boundary conditions both hyperbolic and trigonometric functions are needed. The first
three beam mode shapes for the configurations given in Table 8.2 are shown in Figure 8.11.

8.3.2.2 Impulse Response Function (IRF)
The IRF of the beam can be calculated in the same way as for the rod. The modal parameters
must be determined first and then the receptances for each mode are calculated, which are then
summed to give the overall FRF as in Eq. (8.43a). The overall IRF can be written as a sum of the
IRFs corresponding to each mode, similar to the way shown in Eq. (8.36a). An example is given for
the fixed–free (or cantilever) beam shown in Table 8.2, for the force and displacement response at
the free end. The modal response is compared with the exact solution as with the rod. However, this



Table 8.2 Natural frequencies and mode shapes for some beam configurations.

Configuration
(a) Frequency equation
(b) Mode shapes

W (0) = 0 W (l) = 0

l
W″ (0) = 0 W″ (l) = 0

(a) sin(𝛽B, pl) = 0
(b) 𝜙p(x) =

√
2 sin(p𝜋x∕l)

𝛽B, pl = p𝜋

l

W (0) = 0 W (l) = 0

W′ (0) = 0 W′ (l) = 0

(a) cos(𝛽B, pl) cosh(𝛽B, pl) = 1
(b) 𝜙p(x) = cosh(𝛽B, px)− cos(𝛽B, px) −𝜎p(sinh(𝛽B, px)− sin(𝛽B, px)),

where 𝜎p =
(cosh(𝛽B,pl) − cos(𝛽B,pl))
sinh(𝛽B,pl) − sin(𝛽B,pl)

𝛽B,1l = 4.73004
𝛽B,2l = 7.85320
𝛽B,3l = 10.9956
𝛽B,4l = 14.1372
𝛽B,5l = 17.2788
𝛽B, pl≈ (2n+ 1)𝜋/2, p≥ 6



W″ (0) = 0 W″ (l) = 0

W‴ (0) = 0 W‴ (l) = 0

(a) cos(𝛽B, pl) cosh(𝛽B, pl) = 1
(b) 𝜙p(x) = cosh(𝛽B, px)+ cos(𝛽B, px) −𝜎p(sinh(𝛽B, px)+ sin(𝛽B, px)),

where 𝜎p =
(cosh(𝛽B,pl) − cos(𝛽B,pl))
sinh(𝛽B,pl) − sin(𝛽B,pl)

rigid body modes
𝜙01(x) = 1, 𝜙02(x) =

√
3(1 − 2x∕l)

𝛽B,1l = 4.73004
𝛽B,2l = 7.85320
𝛽B,3l = 10.9956
𝛽B,4l = 14.1372
𝛽B,5l = 17.2788
𝛽B, pl≈ (2n+ 1)𝜋/2, p≥ 6

W (0) = 0 W″ (l) = 0

W′ (0) = 0 W‴ (l) = 0

(a) cos(𝛽B, pl) cosh(𝛽B, pl) = − 1
(b) 𝜙p(x) = cosh(𝛽B, px)− cos(𝛽B, px)− 𝜎p(sinh(𝛽B, px)− sin(𝛽B, px)),

where 𝜎p =
(sinh(𝛽B,pl) − sin(𝛽B,pl))
cosh(𝛽B,pl) + cos(𝛽B,pl)

𝛽B,1l = 1.87510
𝛽B,2l = 4.69409
𝛽B,3l = 7.85476
𝛽B,4l = 10.9955
𝛽B,5l = 14.1372
𝛽B, pl≈ (2n− 1)𝜋/2, p≥ 6

Natural frequency 𝜔p = (𝛽B,pl)2
(

EI
𝜌Sl4

)1
2

; mode shape normalisation
∫

l

0
𝜙2

p(x)dx = l.
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1 3

2

Figure 8.11 First three mode shapes of a pinned–pinned beam, a fixed–fixed beam, a free–free beam, and
a fixed–free beam.

is slightly more complicated because displacement and rotation of the beam have to be accounted
for, and additional hyperbolic functions are required to describe the beam vibration. To determine
the exact FRF at the end of the cantilever beam, the dynamic stiffness of the beam is first needed.
It is given by Gardonio and Brennan (2004)

⎧
⎪
⎪
⎨
⎪
⎪⎩

F(0)
M(0)
F(l)
M(l)

⎫
⎪
⎪
⎬
⎪
⎪⎭

=
EI𝛽3

B

N

⎡
⎢
⎢
⎢
⎢⎣

−K11 −P K12 V
−P Q11 −V Q12
K12 −V −K11 P
V Q12 P Q11

⎤
⎥
⎥
⎥
⎥⎦

⎧
⎪
⎪
⎨
⎪
⎪⎩

W(0)
W ′(0)
W(l)
W ′(l)

⎫
⎪
⎪
⎬
⎪
⎪⎭

(8.47)

where F(0) and M(0), and F(l) and M(l) are the forces and moments at the left- and right-hand of
the beam, respectively, and the elements of the matrix are given by

K11 = cos(𝛽Bl) sinh(𝛽Bl) + sin(𝛽Bl) cosh(𝛽Bl)
K12 = sin(𝛽Bl) + sinh(𝛽Bl)

P = (sin(𝛽Bl) sinh(𝛽Bl))∕𝛽B
V = (cos(𝛽Bl) − cosh(𝛽Bl))∕𝛽B

Q11 = (cos(𝛽Bl) sinh(𝛽Bl) − sin(𝛽Bl) cosh(𝛽Bl))∕𝛽2
B

Q12 = (sin(𝛽Bl) − sinh(𝛽Bl))∕𝛽2
B

N = cos(𝛽Bl) cosh(𝛽Bl) − 1

Now the boundary conditions at x = 0 (the left-hand end of the beam) are W(0) = 0 and W ′(0) = 0
as shown in Table 8.2. Thus Eq. (8.47) can be reduced to{

F(l)
M(l)

}
=

EI𝛽3
B

N

[
−K11 P

P Q11

]{
W(l)
W ′(l)

}
(8.48)

which can be further rearranged to give{
W(l)
W ′(l)

}
= N

EI𝛽3
B

[
−K11 P

P Q11

]−1 {F(l)
M(l)

}
(8.49)

As M(l) = 0, the point receptance at x = l is given by

W(l)
F(l)

= −N
EI𝛽3

B

(
Q11

Q11K11 + P2

)
(8.50)
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The modal response is given by

H(j𝜔) = W(l)
F(l)

=
∞∑

p=1

𝜙2
p(l)

m̃p
(
𝜔2 − 𝜔2

p + j2𝜁p𝜔𝜔p
) , (8.51)

where m̃p = 𝜌Sl, 𝜙p(l) = 2, and 𝜔p = (𝛽B,pl)2
(

EI
𝜌Sl4

) 1
2 in which 𝛽B, pl for each natural frequency is

given in Table 8.2. The exact and approximate FRFs are shown in Figure 8.12 for a wide range of
frequencies. Note that both the modulus and frequency axes are logarithmic. Note also that, as with
the rod, damping has been included in the exact model using a material loss factor 𝜂, so that Young’s
modulus becomes complex and is given by E(1+ j𝜂). The relationship between the loss factor and
the modal damping ratio is 𝜂 = 2𝜁p. It can be seen that the FRF from the modal model gives a result
which is very similar to that from the exact model, provided that enough modes are included in the
response. Comparing the FRF for the rod in Figure 8.10 and the FRF for the beam in Figure 8.12, it
can be seen that although they have similar structure (an anti-resonance between each resonance
frequency, which occurs because they are both point receptances), the natural frequencies for the
beam are not harmonically related, unlike for the rod. This is because the wave speed in the beam
is a function of frequency, so that 𝜔p ∝ 𝛽2

B for the beam whereas 𝜔p ∝ 𝛽R for the rod. This means
that the IRF for the beam will have a different shape compared to that for the rod. The IRF for
the fixed–free beam is shown in the lower right part of Figure 8.12. It can be seen that the IRF
for the exact model and for the modal model are similar, which means that the acausality due to
structural damping is small for 𝜁p = 0.01. As with the rod, there are some acausality issues for both
models due to the rectangular window applied in the frequency domain, which was discussed in
Chapter 4. Examination of the IRF in Figure 8.12 shows that the higher-frequency modal responses
are evident at the beginning of the time history, but as time increases it tends to a decaying sine
wave as in the other cases studied in this book.

l

log f

Exact model
Modal model

t

w(l,t)

h(t)

fe(l,t)

�p = 0.01
log

W(l )

F(l )

Figure 8.12 FRF and IRF of a fixed–free (cantilever) beam.
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MATLAB Example 8.7

In this example, the transfer receptance FRF and corresponding IRF of a fixed–free beam is
calculated using the modal approach. The effects of changing the number of modes used in
the calculation are investigated.

clear all

%% Parameters
E=69e9; % [N/m2]
rho=2700; % [kg/m3]
l=1;b=0.02;d=0.01;S=b*d;I=b*dˆ3/12;
z=0.01;n=2*z;
Ed=E*(1+j*n); % [N/m2]
m=rho*S*l; % [kg]

%% Modal solution
fs=2000;df=0.001;dt=1/fs;
f=0.001:0.01:fs/2;
w=2*pi*f;
k=w.ˆ0.5*(rho*S/(Ed*I))ˆ.25;

nmax=10;
kl(1)=1.87510;kl(2)=4.69409;kl(3)=7.85476;
kl(4)=10.9956;kl(5)=14.1372;
n=6:nmax;
kl(n)=(2*n-1)*pi/2;

for n=1:nmax
A=(sinh(kl(n))-sin(kl(n)))./(cosh(kl(n))+cos(kl(n)));
x=0.2;
phi1=cosh(kl(n)*x/l)-cos(kl(n)*x/l)-...
A.*(sinh(kl(n)*x/l)-sin(kl(n)*x/l));
x=l;
phi2=cosh(kl(n)*x/l)-cos(kl(n)*x/l)-...
A.*(sinh(kl(n)*x/l)-sin(kl(n)*x/l));
wn=sqrt((E*I)./(rho*S))*(kl(n)).ˆ2;
Ht(n,:)=phi1*phi2./(m*(wnˆ2-w.ˆ2+j*2*w*wn*z));
end
Htt=sum(Ht);

%% IRF
Htd=[Htt fliplr(conj(Htt))];
Hm=Htd(1:length(Htd)-1);
h=fs*ifft(Hm);
h=circshift(h,10);

t=0:dt:(length(h)-1)*dt;

%% Plot the results
figure
semilogx(f,20*log10(abs(Htt)))
axis square; grid; axis([1,1010,-150,-30])
xlabel('frequency (Hz)');ylabel('|FRF| (dB ref 1m/N)')

figure
plot(t,h)
axis square; grid; axis([0,1,-0.02,0.02])
xlabel('time (s)');ylabel('IRF (m/Ns)')

% Youngs modulus of aluminium
% density of aluminium
% geometrical parameters
% damping ratio and loss factor
% complex Young's modulus
% mass of the beam

% frequency parameters
% frequency vector

% wavenumber

% number of modes
% kl values 1-3
% kl values 4,5

% kl values > 5

% force position
% mode shape at force position

% displacement position
% mode shape at response position

% natural frequency
% FRF of each mode

% overall FRF

% form the double-sided spectrum
% set the length of the FRF
% calculation of the IRF
% shift the end of the IRF to
the beginning
% time vector

% FRF

% IRF

(Continued)
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MATLAB Example 8.7 (Continued)

Results

l
w(l, t)

l 5
fe(l 5, t)

3 Modes

|F
R

F
| (

d
B

 r
ef

 1
 m

/N
)

IR
F

 (
m

/N
s)

10 Modes

Time (s) Time (s)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Frequency (Hz) Frequency (Hz)

101 102 103100

0.02

0.01

0

–0.01

–0.02

0.02

0.01

0

–0.01

–0.02

–40

–60

–80

–100

–120

–140

–40

–60

–80

–100

–120

–140

101 102 103100

Comments:

1. Compare the difference between the shape of waveform for the IRF corresponding
to the transfer receptance calculated in this example with the IRF corresponding to
the point receptance given in Figure 8.12. Try to think of a reason why this difference
occurs.

2. Note the way in which the reduction in the number of modes does not appreciably change
the shape of the waveform as time increases.

3. An exercise for the reader is to investigate what happens to the IRF, when the:
(a) geometrical parameters are changed,
(b) damping is changed,
(c) number of modes is reduced,
(d) sampling frequency (the frequency range of the FRF) is changed.
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8.4 Summary

This chapter has described how to model two classes of MDOF system. One of these is a lumped
parameter system comprising point masses, massless springs, and viscous dampers. It is effectively
an extension of the SDOF system considered at length in previous chapters. A chain-like system
has been discussed, introducing the concept of an anti-resonance, whose frequency depends on
the location of the force and the measured response. A description of the receptance FRF in terms
of the modal parameters has been derived for a system in which the damping is of the Rayleigh
type. This enables an analytical expression for the corresponding IRF to be derived in terms of a

Table 8.3 Summary of the expression for the FRF and IRF of a lumped parameter MDOF system.

Lumped parameter system

The equation of motion is given by Mẍ + Cẋ + Kx = f,

where M, C, and K are the mass, damping, and stiffness matrices, and f is the vector of applied forces.

The undamped natural frequencies diag{𝜔p} are given by the square root of the eigenvalues of the matrix
M−1K.

The corresponding mode shapes are given by the eigenvectors of the matrix M−1K.

The receptance FRF is given by

… … mn …ml

Fl Xn

(

P

p = 1 ωp
2 – ω2 + j2ζpωωp)

=
ϕp (l )ϕp (n)Xn

Fl mp
›

where 𝛟p(l) is the p-th mode shape at the l-th mass where the force is applied, and 𝛟p(n) is the p-th mode
shape at the n-th mass where the displacement is measured.

The mode shapes are normalised such that 𝚽TM𝚽 = I, where 𝚽 = [𝛟1𝛟2 · · ·𝛟P] is the matrix of mode
shape vectors.

m̃p = 1 is the modal mass, and 𝜁p = c̃p∕(2m̃p𝜔p) is the modal damping ratio, in which c̃p is the modal
damping coefficient (for proportional damping) which is an element in the diagonal matrix C̃ = 𝚽TC𝚽.

The IRF is given by the sum of the IRFs for each mode

h(t) =
P∑

p=1
Ap sin(𝜔d,pt), where Ap =

𝛟p(l)𝛟p(n)
m̃p𝜔d,p

e−𝜁p𝜔pt and 𝜔d,p = 𝜔p

√
1 − 𝜁2

p .
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finite number of modes of the system. A summary of the important points for a lumped parameter
MDOF system is given in Table 8.3.

The second type of MDOF system considered in this chapter is a distributed parameter system,
which is classified as a continuous system. Unlike a lumped parameter MDOF system which can
be described in terms of an ODE which is a function of time, this type of structure is described in
terms of a PDE, which is a function of both space and time. Because of the distributed nature of the
mass and stiffness, this model has an infinite number of DOF, which means that, in principle at
least, it also has an infinite number of natural frequencies. The models used for continuous struc-
tures generally have an upper frequency limit in terms of their validity, however, and so are limited

Table 8.4 Summary of the expressions for the FRF and IRF of a rod.

Distributed parameter system: Rod

The equation of motion is given by ES𝜕
2u(x, t)
𝜕x2 − 𝜌S𝜕

2u(x, t)
𝜕t2 = −fe(x, t)

where E, S, and 𝜌 are the Young’s modulus, cross-sectional area, and density of the rod, respectively, and
f e(x, t) is the applied axial force per unit length.

The undamped natural frequencies are given by 𝜔p = 𝛽R,pl
(

E
𝜌l2

) 1
2

, where 𝛽R, pl is a function of the

boundary conditions and can be determined using Table 8.1.

The corresponding mode shapes 𝜙p(x) are dependent upon the boundary conditions and are listed in
Table 8.1.

The receptance FRF is given by

F (x1) U (x2)

U(x2)

F(x1)
=

∞∑
p=1

𝜙p(x1)𝜙p(x2)

m̃p

(
𝜔2

p − 𝜔2 + j2𝜁p𝜔𝜔p

)

where 𝜙p(x1) is the p-th mode shape at the position where the force is applied, and 𝜙p(x2) is the p-th mode
shape at the position where the displacement is measured.

The mode shapes are normalised so that
∫

l

0
𝜙2

p(x)dx = l.

The modal mass m̃p = 𝜌Sl and the modal damping ratio 𝜁p = 𝜂/2, where 𝜂 is the material loss factor of
the rod.

The IRF is given by the sum of the IRFs for each mode

h(t) =
∞∑

p=1
Ap sin(𝜔d,pt), where Ap =

𝜙p(x1)𝜙p(x2)
m̃p𝜔d,p

e−𝜁p𝜔pt and 𝜔d,p = 𝜔p

√
1 − 𝜁2

p .
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Table 8.5 Summary of the expressions for the FRF and IRF of a beam.

Distributed parameter system: Beam

The equation of motion is given by EI𝜕
4w(x, t)
𝜕x4 + 𝜌S 𝜕

2w(x, t)
𝜕t2 = fe(x, t)

where E, I, S, and 𝜌 are Young’s modulus, second moment of area, cross-sectional area, and density of the
beam, respectively, and f e(x, t) is the applied lateral force per unit length.

The undamped natural frequencies are given by 𝜔p = (𝛽B,pl)2
(

EI
𝜌Sl4

)1
2

, where 𝛽B, pl is a function of the

boundary conditions and can be determined using Table 8.2.

The corresponding mode shapes 𝜙p(x) are dependent upon the boundary conditions and are listed in
Table 8.2.

The receptance FRF is given by

F (x1)
W (x2)

W(x2)

F(x1)
=

∞∑
p=1

𝜙p(x1)𝜙p(x2)

m̃p

(
𝜔2

p − 𝜔2 + j2𝜁p𝜔𝜔p

)

where 𝜙p(x1) is the p-th mode shape at the position where the force is applied, and 𝜙p(x2) is the p-th mode
shape at the position where the displacement is measured.

The mode shapes are normalised so that
∫

l

0
𝜙2

p(x)dx = l.

The modal mass m̃p = 𝜌Sl and the modal damping ratio 𝜁p = 𝜂/2, where 𝜂 is the material loss factor of
the beam.

The IRF is given by the sum of the IRFs for each mode

h(t) =
∞∑

p=1
Ap sin(𝜔d,pt), where Ap =

𝜙p(x1)𝜙p(x2)
m̃p𝜔d,p

e−𝜁p𝜔pt and 𝜔d,p = 𝜔p

√
1 − 𝜁2

p .

to a finite number of DOF in practice. Two types of one-dimensional structure were discussed in
this chapter, a rod, which supports axial motion, and a beam, which supports lateral motion. There
are two main differences between these two structures. One is that the rod has a wave speed that
is independent of frequency, and the beam has a wave speed that is proportional to the square root
of frequency. This influences the spacing between the natural frequencies for each structure. The
second is that the behaviour of the beam is a function of the shear force and bending moment, and
the motion is described in terms of a lateral displacement and a rotation, whereas the behaviour
of the rod is only governed by the axial force and its motion is simply described by the axial dis-
placement. Both the rod and the beam can be described in terms of modal parameters in the same
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way as a lumped parameter structure, which enables analytical expressions for their IRFs to be
written down. A summary of the important points for the vibration of a rod and a beam is given in
Tables 8.4 and 8.5, respectively.
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9

Multi-Degree-of-Freedom (MDOF) Systems: Virtual Experiments

9.1 Introduction

This chapter uses many of the topics discussed in previous chapters to conduct some virtual exper-
iments with multi-degree-of-freedom (MDOF) systems. Two structures are investigated. One is a 2
DOF lumped parameter system that exhibits both resonance and anti-resonance frequencies, and
the other is a cantilever beam comprising distributed mass and stiffness. In both cases the structures
are excited using a shaker driven with random noise, and their modal properties are determined to
develop modal models. This type of model can be used to gain insight into the dynamic behaviour of
the structure under test, or to facilitate predictions which can be used for structural design changes
or to help solve vibration control problems.

The concept of a virtual experiment was outlined in Chapter 1 and is further discussed here for
convenience. The arrangement is shown in Figure 9.1. In many real vibration experiments the
aim is to determine the dynamic properties of the structure under test from input and output mea-
surements. Time histories of the excitation force and the resulting responses at several locations
are measured. In many experiments, accelerometers are used to measure the responses, as they
provide absolute rather than relative measurements, and are small so do not adversely affect the
structure under test. In the virtual experiments described in this chapter, the dynamic properties
of the structure under test are also determined from force and acceleration time histories, but these
time histories are from simulations rather than measurements. Thus, the first step in a virtual
experiment is to determine the time histories as indicated in Figure 9.1, and the ways this can be
achieved are discussed in Chapters 5 and 6. Once the force and acceleration time histories have
been determined, they can be processed, by transformation to the frequency domain as discussed in
Chapter 7 to determine the modal and dynamic properties of the system. This is step 2 in Figure 9.1.

Following the virtual experiments on the 2DOF system and the cantilever beam, the use of a
vibration absorber to control vibration is discussed. Its performance is illustrated using an SDOF
host structure and is then applied to the cantilever beam. Virtual experiments show how the per-
formance of a vibration absorber on a multi-modal distributed parameter system can be predicted
both in the time and frequency domains.

9.2 Two Degree-of-Freedom System: FRF Estimation

The virtual experiment with the 2DOF system is shown in Figure 9.2. A shaker is used to excite
the structure on the left-hand mass. Random noise, which has a constant amplitude up to half the

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations

http://www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
Pavilion
#custom
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Figure 9.1 Procedure to carry out a virtual experiment.
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Figure 9.2 Measurement of the accelerance of a 2DOF system.

sampling frequency and a standard deviation of unity, is supplied to the shaker. As discussed in
Chapter 7, the force generated by the shaker is proportional to the current supplied and is divided
into two parts. One part drives the shaker itself. The other part f e is applied to the structure and is
measured by the force gauge. The resulting acceleration signals of the two masses are calculated
using the 2DOF model. In this chapter, this is achieved by convolving the applied force f e with the
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impulse response function (IRF) of the 2DOF system to give the acceleration responses, i.e.

ẍ1,2(t) = fe(t) ∗ ḧ1,2(t), (9.1)

where ḧ1,2(t) = 
−1(−𝜔2H1,2) in which 

−1 denotes the inverse Fourier transform, and
H1 = H(1, 2) and H2 = H(2, 2), where (i, j) are the elements in the receptance matrix H =
[K−𝜔2M+ j𝜔C]−1, in which M, K, and C are the mass, stiffness, and damping matrices,
respectively, given by

M =
[

m1 0
0 m2

]
, K =

[
k1 + k2 −k2
−k2 k2

]
, C =

[
c1 + c2 −c2
−c2 c2

]
.

Once the acceleration time histories have been determined, the second step of the process can
be carried out, using these time histories together with the force time history, to determine the
accelerances FRFs of the system. This is illustrated in MATLAB Example 9.1 for H2.

MATLAB Example 9.1

In this example, the point accelerance FRF of the 2DOF system shown in Figure 9.2 is estimated
when excited by a shaker with random noise.

clear all

%% Parameters

% structure

m1=1;m2=1;k1=1e4;k2=1e4; % [kg, N/m]

M=[m1 0; 0 m2];

K=[k1+k2 -k2; -k2 k2];

C=2e-4*K; % [Ns/m]

% shaker

ms=0.1; % [kg]

ws=2*pi*10; % [(rad/s)]

ks=wsˆ2*ms; % [N/m]

zs=0.1;cs=2*zs*sqrt(ms*ks); % [ ,Ns/m]

%% Direct FRF calculation

fs=1000;df=0.01;dt=1/fs; % [Hz, s]

n=0;

for f=0:df:fs/2 % [Hz]

w=2*pi*f; % [rad/s]

n=n+1;

A=inv(K-w.ˆ2*M+j*w*C); % [m/N]

Acc=-wˆ2*A; % [m/Ns2]

R(n)=A(2,2); % [m/N]

H(n)=Acc(2,2); % [m/Ns2]

end

%% IRF

Hd=[H fliplr(conj(H))]; % [m/Ns2]

Ht=Hd(1:length(Hd)-1); % [m/Ns2]

h=fs*ifft(Ht); % [m/Ns3]

%% Input and output

T=250;t=0:dt:T; % [s]

% masses and stiffnesses

% mass matrix

% stiffness matrix

% damping matrix

% mass

% natural frequency

% stiffness

% damping ratio, coefficient

% frequency and time parameters

% frequency loop

% receptance matrix

% accelerance matrix

% point receptance

% point accelerance

% form the double-sided spectrum

% set the length of the FRF

% calculation of the IRF

% signal duration; time vector

(Continued)
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MATLAB Example 9.1 (Continued)

fe = randn(1,length(t));fe=fe-mean(fe);

f=0:df:fs/2; w=2*pi*f; % [Hz, rad/s]

K=1./R; % [N/m]

Ks=ks-w.ˆ2*ms+j*w*cs; % [N/m]

Fe=K./(K+Ks);

G=[Fe,fliplr(conj(Fe(1:length(Fe)-1)))];

g=fs*ifft(G); % [1/s]

fes=conv(real(g),fe)/fs;fes=fes(1:length(fe));

N=length(fes);

x=conv(h,fes)/fs;x=x(1:length(fe));

%% Frequency domain calculations

Na = 8;

nfft=round(N/Na);

noverlap=round(nfft/2);

Sff=cpsd(fes,fes,hann(nfft),noverlap,nfft,fs);

Sxx=cpsd(x,x,hann(nfft),noverlap,nfft,fs);

He=tfestimate(fes,x,hann(nfft),noverlap,nfft,fs);

CoHe=mscohere(fes,x,hann(nfft),noverlap,nfft,fs);

dff=1/(nfft*dt);ff=0:dff:fs/2;

%% Plot the results

figure

plot(t,fe)

axis square; axis([0,250,-6,6]); grid

xlabel('time (s)');ylabel('force (N)');

figure

plot(t,x)

axis square; axis([0,250,-8,8]); grid

xlabel('time (s)');

ylabel('acceleration (m/sˆ2)');

figure

plot(ff,10*log10(abs(Sff)))

axis square; axis([0,40,-50,-10]); grid

xlabel('frequency (Hz)');

ylabel('force PSD (dB ref 1 Nˆ2/Hz)');

figure

plot(ff,10*log10(abs(Sxx)))

axis square; axis([0,40,-80,20]); grid

xlabel('frequency (Hz)');

ylabel('acc. PSD (dB ref 1 mˆ2/sˆ4Hz)');

figure

plot(ff,20*log10(abs(He))); hold on

plot(f,20*log10(abs(H)),'-k')

axis square; axis([0,40,-40,40]); grid

% random force signal

% frequency vector

% dynamic stiffness of structure

% dynamic stiffness of shaker

% FRF for structural force

% double-sided spectrum

% IRF for structural force

% force applied to structure

% acceleration response

% number of averages

% number of points in the DFT

% number of points in the overlap

% PSD of force applied

% PSD of acceleration response

% accelerance FRF

% coherence

% frequency resolution and vector

% force time history

% acceleration time history

% force PSD

% acceleration PSD

% FRF modulus

(Continued)
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MATLAB Example 9.1 (Continued)

xlabel('frequency (Hz)');

ylabel('|accelerance| (dB ref 1 m/Nsˆ2)');

figure

plot(ff,180/pi*unwrap(angle(He))); hold on

plot(f,180/pi*unwrap(angle(H)),'--k')

axis square; axis([0,40,0,200]); grid

xlabel('frequency (Hz)');

ylabel('phase (degrees)');

figure

plot(ff,CoHe)

axis square; axis([0,40,0,1]); grid

xlabel('frequency (Hz)');

ylabel('coherence');

figure

plot(real(He),imag(He)); hold on

plot(real(H),imag(H),'--k')

axis square; axis([-40,40,0,80]); grid

xlabel('real ∖{accelerance∖} (m/Nsˆ2)');

ylabel('imag ∖{accelerance∖} (m/Nsˆ2)');

% phase

% coherence

% Nyquist plot

Results
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MATLAB Example 9.1 (Continued)
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Comments:

1. This example gives the accelerance of a 2DOF system using random noise excitation. An
exercise for the reader is to estimate the accelerance FRF using chirp excitation with the
shaker and also to use an impact hammer. Compare the results.

2. In this example the output acceleration is determined by convolving the input force with
IRF of the system. An exercise for the reader is to determine the acceleration response
by using the Runge–Kutta method to numerically integrate the equations of motion and
differentiating the velocity time history in the time domain to give acceleration.

3. Repeat the exercise by estimating the transfer accelerance with the shaker in its current
position. Also change the position of the shaker so that it is attached to m1 and then esti-
mate the point and transfer accelerances. Check that reciprocity holds by overlaying the two
transfer accelerances.

4. An exercise for the reader is to investigate what happens when the mass and natural fre-
quency of the shaker are changed. Also investigate the effects of changing damping in the
structure.

9.2.1 Determination of a Modal Model

It was shown in Chapter 8 that a lumped parameter model can be described in terms of its modal
parameters. A modal model can also be determined from a measured FRF by extracting the modal
parameters from the FRF, and this is illustrated in this section using the accelerance FRF esti-
mated in MATLAB Example 9.1. In keeping with the spirit of this book, this process is described in
an elementary way, but there are advanced techniques to achieve this, and the interested reader is
referred to more specialist texts for details, for example Avitabile (2017) and Ewins (2000). In the
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simple approach described here, it is assumed that the modes are well separated, such that at fre-
quencies close to a resonance frequency, the FRF can be approximated by a single mode or SDOF
system. Now, the receptance given in Eq. (8.16), can be written as

Xn

Fl

=
P∑

p=1

(An,l)p

𝜔2
p − 𝜔2 + j2𝜁p𝜔𝜔p

, (9.2)

where the subscripts n and l refer to masses n and l, respectively, and 𝜔p, 𝜁p, and (An, l)p are the
natural frequency, modal damping ratio, and modal constant of the p-th mode, respectively. Thus,
if the three modal parameters can be determined for each mode, the FRF can then be approximated
by a modal model. Provided the damping is light and the modes are well separated, these can be
determined as follows:

1. Calculate the receptance from the accelerance FRF by dividing by −𝜔2.
2. Determine the natural frequencies 𝜔p by manually checking the frequencies at which the mod-

ulus of the receptance FRF is a maximum (or when the imaginary part of the receptance is a
minimum or a maximum).

3. Use the half-power point method described in Chapter 2 to determine the modal damping ratios
𝜁p. Note that it is easier to do this by checking the frequencies 𝜔1, 𝜔p, and 𝜔2 for mode p when
the corresponding phase angle is −45∘, −90∘, and −135∘, respectively. The modal damping ratio
is then given by 𝜁p ≈ (𝜔2 −𝜔1)/(2𝜔p).

4. Determine the maximum value of the receptance by checking the maximum or mini-
mum values of the imaginary part of the receptance. This gives Im{(Xn∕Fl)p}min∕max .
Use this value to determine (An, l)p by noting that this occurs when 𝜔 = 𝜔p, so that
(An,l)p = 2𝜁p𝜔

2
p Im{(Xn∕Fl)p}min∕max . Note that the sign of the imaginary part of the receptance

at a natural frequency depends upon the position of the response measurement. For a point
receptance the imaginary part is always negative, but for a transfer receptance it can be either
positive or negative for any particular natural frequency.

Once the modal properties have been determined for each mode, the FRF can be plotted and
compared with the measured FRF. This is carried out in MATLAB Example 9.2.

MATLAB Example 9.2

In this example, the modal properties of the system shown in Figure 9.2 are determined and
a modal model of the FRF is constructed and compared with the measured FRF.

% clear all

% Exercise_9_1.m

%% Calculation of receptance

Re=He./(-(2*pi*ff).ˆ2)'; % [m/N]

%% Modal properties

f1=9.84; f2=25.71; % [Hz]

x1=0.0148;x2=0.0003222; % [m/N]

% Run MATLAB Example 9.1 and delete
the figures

% receptance

% estimation of natural
frequencies from receptance FRF

% estimation of receptance at the
resonance frequencies from the
Imag. part of the receptance

(Continued)
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MATLAB Example 9.2 (Continued)

z1=(9.9-9.78)/(2*9.84);z2=(26.1-25.23)/(2*25.71);

w=2*pi*ff;w1=2*pi*f1;w2=2*pi*f2; % [rad/s]

A1=x1.*(2*z1*w1ˆ2); A2=x2.*(2*z2*w2ˆ2);

Rm=A1./(w1ˆ2-w.ˆ2+j*2*z1*w*w1)+A2./(w2ˆ2-...

w.ˆ2+j*2*z2*w*w2);

%% Figures

figure

plot(ff,20*log10(abs(Re)));hold on

plot(ff,20*log10(abs(Rm)),'--k')

axis square; axis([0,40,-120,-20]); grid

xlabel('frequency (Hz)');

ylabel('|receptance| (dB ref 1 m/N)');

figure

plot(ff,180/pi*unwrap(angle(Re)));hold on

plot(ff,180/pi*unwrap(angle(Rm)),'--k',...

'linewidth',2)

axis square; axis([0,40,-200,0]); grid

xlabel('frequency (Hz)');

ylabel('phase (degrees)');

figure

plot(real(Re),imag(Re));hold on

plot(real(Rm),imag(Rm),'--k');hold on

plot(real(R),imag(R),'k','linewidth',1.5)

axis square; axis([-0.01,0.01,-0.02,0]); grid

xlabel('real ∖{receptance∖} (m/N)');

ylabel('imag ∖{receptance∖} (m/N)');

% estimation of the modal damping
ratios using the half-power points

% frequency and nat. freqs.

% modal constants

% estimated receptance from modal
parameters

Results
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MATLAB Example 9.2 (Continued)
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Comments:

1. Note that even though the frequency resolution is very good, the peak in the FRF at the first
resonance frequency is still not completely resolved. This is evident from the shape of the
Nyquist plot. This means that there is a small error in the modal model, which manifests
itself as a slight shift in the estimated anti-resonance frequency. This can be resolved by
using a finer frequency resolution.

2. Note the error in the measured receptance at very low frequencies. This is because the
receptance was determined by dividing the receptance by −𝜔2. The calculated receptance
at zero frequency is 0/0 in principle. However, this is contaminated by noise, which causes
the error.

3. An exercise for the reader is to estimate modal models for the other point accelerance, and
the transfer accelerance.

4. An exercise for the reader is to determine modal models using data from other measure-
ments using chirp excitation with the shaker, and also excitation using an impact hammer.
Compare the results.

9.3 Beam: FRF Estimation

In this section a virtual experiment is carried out on a beam, in a similar way to that carried out
on the 2DOF lumped parameter system described in the previous section. The main difference
between the two structures is that the beam has an infinite number of DOF, and hence an infinite
number of natural frequencies, whereas the lumped parameter system has a finite number of DOF
and hence a finite number of natural frequencies. In the virtual experiment, the beam can only be
excited over a finite range of frequencies, and so only a finite number of modes will be excited. The
experiment is shown in Figure 9.3. It consists of a 0.75 m long aluminium cantilever beam with
a cross-section 2 cm× 1 cm. It is clamped at the left-hand end and excited by an electrodynamic
shaker 10 cm from the clamped end. The force applied to the beam is measured by a force gauge
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Figure 9.3 Measurement of receptance FRFs and modal properties of a cantilever beam.

as shown in the figure, and the displacement of the beam is measured at 14 positions that are 5 cm
apart, also shown in the figure. Note that in an actual experiment it is likely that accelerometers or
a laser velocity sensor would be used to measure the responses of the beam. However, if acceler-
ation responses of the beam are simulated, as in the previous experiment with the 2DOF system,
a significant amount of aliasing occurs at low frequencies for the reasons discussed in Chapter 4.
The aliasing is more profound with a beam, however, because the mean level of the accelerance
increases with frequency, unlike with the lumped parameter system, where it has a constant value
at high frequencies. Accordingly, to avoid aliasing issues, displacement measurements are made in
the virtual experiment, which could be achieved in practice by using a displacement sensing laser,
for example. The large number of measurement positions shown on the beam has been chosen so
that high fidelity estimates of the first three mode shapes can be made from the measured data (this
is further discussed in Section 9.3.1).

Random noise, which has a constant amplitude up to half the sampling frequency and a standard
deviation of unity, is supplied to the shaker. As with the previous experiment, the force generated
by the shaker is proportional to the current supplied, and is divided into two parts, one part driving
the shaker and the other part fe, is applied to the beam and is measured by the force gauge. The
resulting displacement signals are calculated using a model of the beam, by convolving the applied
force fe, with the displacement IRFs of beam corresponding to each measurement position, i.e. by

xi(t) = fe(t) ∗ hi(t), (9.3)

where hi(t) = 
−1(Hi) in which 

−1 denotes the inverse Fourier transform, and Hi is the corre-
sponding receptance FRF, which can be written in terms of a modal summation as described in
Chapter 8, and is given by

W(xi)

F(xj)
=

∞∑
p=1

𝜙p(xj)𝜙p(xi)

m̃p
(
𝜔2

p − 𝜔2 + j2𝜁p𝜔𝜔p
) , (9.4)

where 𝜙p(xj) and 𝜙p(xi) are the mode shapes of the p-th natural frequency evaluated at the position
where the force is applied (xj), and the positions where the displacement is measured (xi); m̃p,
𝜔p, and 𝜁p are the modal mass, natural frequency, and modal damping ratio for the p-th mode,
respectively. As mentioned above, a finite number of modes are included in the simulation, and
for the specific beam studied in this chapter this involves 10 modes, which adequately covers the
frequency range of 0–1500 Hz, which is up to half the sampling frequency.

Once the displacement time histories have been determined using Eq. (9.3), the force and the
displacement time histories can be used to determine the receptance FRFs of the system. This is
illustrated in MATLAB Example 9.3 for three measurement positions.
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MATLAB Example 9.3

In this example, the receptance FRFs for three measurement positions on a cantilever beam is
estimated from a system excited by a shaker with random noise.

clear all

%% Parameters

% cantilever beam

E=69e9; % [N/m2]

rho=2700; % [kg/m3]

l=0.75;b=0.02;d=0.01;S=b*d;I=b*dˆ3/12;

z=0.01;n=2*z;

Ed=E*(1+j*n); % [N/m2]

m=rho*S*l; % [kg]

% frequency parameters

fs=3000;df=0.01;dt=1/fs;

f=0.001:df:fs/2;

w=2*pi*f;

%% Beam FRFs

n=0;

for x=0.1:0.05:l

n=n+1;

[ht,Htt] = calcFRF(E,I,rho,S,z,m,l,x,w,fs);

H(n,:)=Htt;

h(n,:)=ht;

end

%% Shaker

ms = 0.1; % [kg]

ws=2*pi*10; % [rad/s]

ks=wsˆ2*ms; % [N/m]

zs=0.1;cs=2*zs*sqrt(ms*ks); % [, Ns/m]

Ks=ks-w.ˆ2*ms+j*w*cs; % [N/m]

%% Input and output

T=120;t=0:dt:T; % [s]

fe = randn(1,length(t)); % [N]

fe=fe-mean(fe);

K=1./H(1,:); % [N/m]

Fe=K./(K+Ks);

G=[Fe,fliplr(conj(Fe(1:length(Fe)-1)))];

g=fs*ifft(G);

fes = conv(real(g),fe)/fs; % [N]

fes = fes(1:length(fe)); % [N]

N=length(fes);

[dis] = calcResp(fes,fe,fs,h);

%% Frequency domain calculations

[Sffe,Sff,Sww,He,CoHe,ff]= ...

DisFRF(fes,fe,dis,N,fs,dt);

% Young's modulus of aluminium

% density of aluminium

% geometrical parameters

% damping ratio and loss factor

% complex Young's modulus

% mass of the beam

% frequency and time parameters

% frequency vector

% calculate FRFs and IRFs

% mass

% natural frequency (rad/s)

% stiffness

% damping

% dynamic stiffness of shaker

% signal duration; time vector

% random signal

% set the mean to zero

% dynamic stiffness of structure

% force ratio of applied force

% double sided spectrum

% IRF to determine force applied

% force applied to structure

% force applied to structure

% Number of points

% calculation of displ. responses

% calculation of freq. domain

quantitities

(Continued)
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MATLAB Example 9.3 (Continued)

%% Figures

figure

plot(t,fes,'linewidth',2,'color',[0.7 0.7 0.7])

hold on

plot(t,fe,'linewidth',2,'color',[0.3 0.3 0.3])

axis square; axis([0,120,-8,8]); grid

xlabel('time (s)');ylabel('force (N)');

p=1;

figure

plot(t,dis(p,:),'color',[0.7 0.7 0.7])

axis square; axis([0,120,-30e-5,30e-5]); grid

xlabel('time (s)');ylabel('displacement (m)');

figure

semilogx(ff,10*log10(abs(Sff)))

hold on

semilogx(ff,10*log10(abs(Sffe)))

axis square; axis([1,1000,-80,0]); grid

xlabel('frequency (Hz)');

ylabel('force PSD (dB ref 1 Nˆ2/Hz)');

figure

semilogx(ff,10*log10(abs(Sww(p,:))))

axis square; axis([1,1000,-200,-60]); grid

xlabel('frequency (Hz)');

ylabel('displ. PSD (dB ref 1 mˆ2/Hz)');

figure

semilogx(ff,20*log10(abs(He(p,:))))

hold on

semilogx(f,20*log10(abs(H(p,:))))

hold on

axis square; axis([1,1000,-160,-40]); grid

xlabel('frequency (Hz)');

ylabel('|receptance| (dB ref 1 m/N)');

figure

semilogx(ff,180/pi*unwrap(angle(He(p,:))))

hold on

plot(f,180/pi*unwrap(angle(H(p,:))))

axis square; axis([1,1000,-1000,0]); grid

xlabel('frequency (Hz)');

ylabel('phase (degrees)');

figure

semilogx(ff,CoHe(p,:),'color',[0.7 0.7 0.7])

axis square; axis([1,1000,0,1]); grid

xlabel('frequency (Hz)');

ylabel('coherence');

%% Functions

function [ht,Htt] = ...

% force time history

% measurement position

% disp. time history

% force PSD

% disp. PSD

% FRF modulus

% FRF phase

% coherence

% function to calculate FRF and IRF

(Continued)
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MATLAB Example 9.3 (Continued)

calcFRF(E,I,rho,S,z,m,l,x,w,fs)

nmax=10;

% number of modes

kl(1)=1.87510;kl(2)=4.69409;kl(3)=7.85476;

kl(4)=10.9956;kl(5)=14.1372;

n=6:nmax;

kl(n)=(2*n-1)*pi/2;

for n=1:nmax

A=(sinh(kl(n))-...

sin(kl(n)))./(cosh(kl(n))+cos(kl(n)));

xf=0.1;

phi1=cosh(kl(n)*xf/l)-cos(kl(n)*xf/l)-...

A.*(sinh(kl(n)*xf/l)-sin(kl(n)*xf/l));

phi2=cosh(kl(n)*x/l)-cos(kl(n)*x/l)-...

A.*(sinh(kl(n)*x/l)-sin(kl(n)*x/l));

wn=sqrt((E*I)./(rho*S))*(kl(n)).ˆ2;

Ht(n,:)=phi1*phi2./(m*(wnˆ2-w.ˆ2+j*2*w*wn*z));

end

Htt=sum(Ht);

% kl values 1-3

% kl values 4,5

% kl values > 5

% position of applied force

% mode shape at force position

% mode shape at response position

% natural frequency

% receptance FRF of each mode

% overall receptance FRF

%IRF

Hd=[Htt fliplr(conj(Htt))];

Hdt=Hd(1:length(Hd)-1);

ht=fs*ifft(Hdt);

end

function [dis] = calcResp(fes,fe,fs,h)

for n=1:14

dd = conv(real(h(n,:)),fes)/fs;

dis(n,:) = dd(1:length(fe));

end

end

function [Sffe,Sff,Sww,He,CoHe,ff] = ...

DisFRF(fes,fe,dis,N,fs,dt)

Na = 8;

nfft=round(N/Na);

noverlap=round(nfft/2);

Sffe=cpsd(fes,fes,hann(nfft),noverlap,nfft,fs);

Sff=cpsd(fe,fe,hann(nfft),noverlap,nfft,fs);

for n=1:14

Sww(n,:)=cpsd(dis(n,:),dis(n,:),hann(nfft),...

noverlap,nfft,fs);

He(n,:)=tfestimate(fes,dis(n,:),hann(nfft),...

noverlap,nfft,fs);

CoHe(n,:)=mscohere(fes,dis(n,:),hann(nfft),...

noverlap,nfft,fs);

end

dff=1/(nfft*dt);

ff=0:dff:fs/2;

end

% form the double-sided spectrum

% set the length of the FRF

% calculation of the IRF

% function to calculate

displacement responses

% displacement response

% displacement response

% function to calculate frequency

% domain quantities

% number of averages

% number of points in the DFT

% number of points in the overlap

% PSD of force generated

% PSD of force applied

% number of measurement positions

% PSD of displacement response

% FRF

% coherence

% frequency resolution

% frequency vector

(Continued)
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MATLAB Example 9.3 (Continued)

Results
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MATLAB Example 9.3 (Continued)

Comments:

1. This example gives the receptance FRFs for several positions on a cantilever beam using
random noise excitation to excite the beam close to the clamped end. Fourteen FRFs are
calculated, but only three are shown. Note the unwrapped phase is plotted so that the actual
phase shift between the force and the displacement at the various points on the beam can
be compared. The reader can plot the other FRFs.

2. An exercise for the reader is to use chirp excitation with the shaker and to use an impact
hammer. Compare the results. Also change the position of the shaker and then calculate the
receptance FRFs.

3. An exercise for the reader is to investigate what happens when the mass and natural fre-
quency of the shaker are changed. Also investigate the effects of changing damping in the
structure.

4. An exercise for the reader is to calculate the acceleration time histories, and then investigate
the aliasing that occurs in the estimation of the accelerance FRFs.

9.3.1 Determination of a Modal Model

As with the virtual experiment for the lumped parameter system, the modal parameters can be
estimated from measured receptance FRFs for the beam. However, because it is a distributed
parameter system, more measurements need to be taken to provide a good estimate of the mode
shapes. The approach is similar to that described for the 2DOF system, but with additional
complexity. As the modes are well separated, an SDOF approach to modal estimation can be
followed, but because there are an infinite number of modes, and only a few modes are included
in the estimated FRFs, the contribution of the high-frequency unmodelled modes to the FRFs
need to be included in the modal model. This contribution is generally called a residual R (Ewins,
2000). For the cantilever beam (in fact for any grounded structure), the residual is an additional
stiffness term. It is a stiffness because the frequency range of interest is less than that containing
the natural frequencies of the unmodelled higher frequency modes. Thus, these modes act as
a stiffness at low frequencies, similar to that described in Chapter 2 for an SDOF system. The
receptance FRF in terms of the measured modal properties is, therefore, given by

W(xi)

F(xj)
=

P∑
p=1

(Aij)p

𝜔2
p − 𝜔2 + j2𝜁p𝜔𝜔p

+ Rij. (9.5)

The residual Rij for each FRF is different and is generally larger for a point receptance. This is
because the individual modal responses for a point receptance have the same sign, so the over-
all receptance is greater than that for an individual mode. The modal responses for a transfer
receptance can be either positive or negative, however, so residuals for some modes tend to cancel
each other, reducing the overall residual compared to that for the point receptance. Including the
residual term is, therefore, most important for a point receptance, which will become evident in
MATLAB Example 9.4.

The mode-shapes can be determined by making a note of the imaginary part of the receptance
(including the sign) at each natural frequency of interest for the chosen points of interest on the
beam. For example, for the beam shown in Figure 9.3, there are 14 points of interest, so 14 num-
bers represent the mode-shape. With an experimentally determined mode-shape, the numbers are
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often normalised by the maximum or minimum displacement per unit force. This is illustrated in
MATLAB Example 9.4.

The procedure to estimate the modal parameters 𝜔p, 𝜁p, and (Aij)p is the same as in steps 2–4 in
Section 9.2.1. The residual term can be determined by adding/subtracting a number until Eq. (9.2)
matches the measured receptance at frequencies well below the fundamental frequency of the
structure. This procedure is also illustrated in MATLAB Example 9.4.

Once the modal properties and residual have been determined, the estimated FRF can be plotted
and compared with the measured FRF. This is carried out in MATLAB Example 9.4 using the first
three modes of the structure.

MATLAB Example 9.4

In this example, the modal properties of the system shown in Figure 9.3 are determined, and
a modal model of the FRF including the first three natural frequencies is constructed and
compared with the measured FRF.

% clear all

% Exercise_9_3.m

%% Mode shapes

xx=[0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 ...

0.5 0.55 0.6 0.65 0.7 0.75];

p1=[0.13 0.29 0.49 0.74 1.03 1.35 1.7 ...

2.07 2.45 2.85 3.25 3.67 4.07 4.48];

p2=[0.11 0.22 0.34 0.44 0.50 0.53 0.51 ...

0.44 0.31 0.15 -0.05 -0.27 -0.50 -0.74];

p3=[0.08 0.13 0.16 0.16 0.12 0.04 -0.04 ...

-0.1 -0.14 -0.14 -0.09 0 0.1 0.22];

%% Theoretical mode-shapes for the first 3 modes

kl=1.87510;

[xf,pt]=modeCalc(kl,l);

p1t=pt;

kl=4.69409;

[xf,pt]=modeCalc(kl,l);

p2t=pt;

kl=7.85476;

[xf,pt]=modeCalc(kl,l);

p3t=pt;

%% Modal properties

% modal model for W1/Fe;

f1=8.13;f2=51.2;f3=143.3;

x1=0.1315e-3;x2=0.1138e-3;x3=7.83e-5;

z1=(8.27-8.07)/(2*f1);z2=(51.73-50.73)/(2*f2);

z3=(144.8-141.9)/(2*f3);

w=2*pi*ff;w1=2*pi*f1;w2=2*pi*f2;w3=2*pi*f3;

% Run MATLAB Example 9.3 and

delete the figures

% positions on the beam where the

mode-shapes are estimated

% obtain the displacement values

from the imaginary part of the

receptance at the first 3

resonance frequencies

% function for mode-shapes

% first mode-shape

% function for mode-shapes

% second mode-shape

% function for mode-shapes

% third mode-shape

% estimate the natural frequencies

from the receptance FRF

% estimate the responses at the

resonance frequencies from the

Imag. Part of the receptance

% estimate the modal damping ratios

using the half-power points

% frequency and natural frequencies

(Continued)
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MATLAB Example 9.4 (Continued)

A1=x1.*(2*z1*w1ˆ2);A2=x2.*(2*z2*w2ˆ2);

A3=x3.*(2*z3*w3ˆ2);

Rm(1,:)=A1./(w1ˆ2-w.ˆ2+j*2*z1*w*w1)+A2./(w2ˆ2-

w.ˆ2+j*2*z2*w*w2)+A3./(w3ˆ2-w.ˆ2+j*2*z3*w*w3);

AA=1/(He(1,1)-Rm(1));

Rmm(1,:)= Rm(1,:) + w./w*1./AA;

% modal model W7/Fe;

f1=8.13;f2=51.2;f3=143.3;

x1=1.699e-3;x2=0.5085e-3;x3=-3.55e-5;

z1=(8.27-8.07)/(2*f1);z2=(51.73-50.73)/(2*f2);

z3=(144.8-141.9)/(2*f3);

w=2*pi*ff;w1=2*pi*f1;w2=2*pi*f2;w3=2*pi*f3;

A1=x1.*(2*z1*w1ˆ2);A2=x2.*(2*z2*w2ˆ2);

A3=x3.*(2*z3*w3ˆ2);

Rm(7,:)=A1./(w1ˆ2-w.ˆ2+j*2*z1*w*w1)+A2./(w2ˆ2-

w.ˆ2+j*2*z2*w*w2)+A3./(w3ˆ2-w.ˆ2+j*2*z3*w*w3);

AA=1/(He(7,1)-Rm(7,1));

Rmm(7,:)= Rm(7,:) + w./w*1./AA;

% modal model W14/Fe;

f1=8.13;f2=51.2;f3=143.3;

x1=4.483e-3;x2=-0.7371e-3;x3=0.2183e-3;

z1=(8.27-8.07)/(2*f1); z2=(51.73-50.73)/(2*f2);

z3=(144.8-141.9)/(2*f3);

w=2*pi*ff;w1=2*pi*f1;w2=2*pi*f2;w3=2*pi*f3;

A1=x1.*(2*z1*w1ˆ2);A2=x2.*(2*z2*w2ˆ2);

A3=x3.*(2*z3*w3ˆ2);

Rm(14,:)=A1./(w1ˆ2-w.ˆ2+j*2*z1*w*w1)+...

w.ˆ2+j*2*z2*w*w2)+A3./(w3ˆ2-...

w.ˆ2+j*2*z3*w*w3);

AA=1/(He(14,1)-Rm(14,1));

Rmm(14,:)= Rm(14,:) + w./w*1./AA;

%% Plot the results

figure

plot(xf,p1t/max(p1t),'color',[0.7 0.7 0.7])

hold on

plot(xx,p1/4.48,'ok','Markersize',10)

axis square; axis([0,0.75,-0.1,1]); grid

xlabel('beam position (m)');

ylabel('mode shape');

figure

plot(xf,-p2t/min(p2t),'color',[0.7 0.7 0.7])

hold on

plot(xx,p2/0.74,'ok','Markersize',10)

axis square; axis([0,0.75,-1,1]); grid

xlabel('beam position (m)');

ylabel('mode shape');

figure

plot(xf,p3t/max(p3t),'color',[0.7 0.7 0.7])

% determine the modal constants

% estimate receptance from modal

parameters

% estimate the residual

% add the residual

% estimate the natural frequencies

% responses at the resonance freqs.

% estimate the modal damping ratios

using the half-power points

% frequency and natural frequencies

% determine the modal constants

% estimate receptance from modal

parameters

% estimate the residual

% add the residual

% estimate the natural frequencies

% responses at the resonance freqs.

% estimate the modal damping ratios

using the half-power points

% frequency and natural frequencies

% determine the modal constants

% estimate receptance from modal

parameters

% estimate the residual

% add the residual

% first mode-shape

% second mode shape

% third mode shape

(Continued)
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MATLAB Example 9.4 (Continued)

hold on

plot(xx,p3/0.22,'ok','Markersize',10)

axis square; axis([0,0.75,-1,1]); grid

xlabel('beam position (m)');

ylabel('mode shape');

p=1;

figure

semilogx(ff,20*log10(abs(He(p,:))))

hold on

semilogx(ff,20*log10(abs(Rm(p,:))))

hold on

semilogx(ff,20*log10(abs(Rmm(p,:))))

axis square; axis([1,1000,-160,-40]); grid

xlabel('frequency (Hz)');

ylabel('|receptance| (dB ref 1 m/N)');

figure

semilogx(ff,180/pi*(angle(He(p,:))))

hold on

semilogx(ff,180/pi*(angle(Rm(p,:))))

hold on

semilogx(ff,180/pi*(angle(Rmm(p,:))))

axis square; axis([1,1000,-200,+200]); grid

xlabel('frequency (Hz)');

ylabel('phase (degrees)');

%% Function

function [xf,pt]=modeCalc(kl,l);

A=(sinh(kl)-sin(kl))./(cosh(kl)+cos(kl));

xf=0:0.01:l;

pt=cosh(kl*xf/l)-cos(kl*xf/l)-...

A.*(sinh(kl*xf/l)-sin(kl*xf/l));

end

% choose position on beam, 1,7 or 14

% modulus of FRF

% phase

% function to calculate mode-shape

Results
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MATLAB Example 9.4 (Continued)

w1 w7 w14

fe fe fe

Modal model with three modes

Measurement

–40

–60

–80

–100

–120

–140

–160

–40

–60

–80

–100

–120

–140

–160

–40

–60

–80

–100

–120

–140

–160

–40

–60

–80

–100

–120

–140

–160

Frequency (Hz) Frequency (Hz) Frequency (Hz)

100 101 102 103 100 101 102 103 100 101 102 103

100 101 102 103 100 101 102 103 100 101 102 103

200

100

–100

–200

0

200

100

–100

–200

0

200

100

–100

–200

0

100 101 102 103

Plus residual

|R
ec

ep
ta

n
ce

| (
d
B

 r
ef

 1
 m

/N
)

|R
ec

ep
ta

n
ce

| (
d
B

 r
ef

 1
 m

/N
)

P
h
as

e 
(°

)

Residual is negligible Residual is negligible

Comments:

1. The mode-shapes are well estimated using the imaginary part of the receptance at the
corresponding natural frequencies. To do this, however, a large number of measurements
need to be made.

2. Note that inclusion of the residual in the modal model is important with the point FRF to
obtain a good match between the measurements and the model.

3. An exercise for the reader is to determine the modal model for other measurement positions.
4. An exercise for the reader is to determine the modal model using data from other measure-

ments using chirp excitation with the shaker and an impact hammer. Compare the results.
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9.4 The Vibration Absorber as a Vibration Control Device

Since its inception (Ormondroyd and Den Hartog, 1928), the vibration absorber has been employed
as a vibration control device for almost 100 years. It is used in one of two distinct ways. Either it
is tuned to a troublesome resonance frequency, where it is configured so that it adds damping to
the host structure, or it is tuned to a troublesome forcing frequency, to provide a high impedance
so that the response of the host structure is minimised at this frequency. In the former case it is
called a ‘vibration absorber’, and in the latter case it is called a ‘vibration neutraliser’. Although
the device has many different forms, some of which are described in Den Hartog (1956) and Reed
(2002), it can be analysed as a base-excited mass-spring-damper system. Of particular interest in
this chapter is the vibration absorber. The theory underpinning its operation and performance is
described, and then two examples are given, in which a vibration absorber is used to suppress
vibration on a lumped parameter and a distributed parameter system.

9.4.1 Theory

To study the way in which a vibration absorber affects the vibration of a host structure, a frequency
domain approach is used, in which the component parts of the system are described in terms of
their FRFs. A generic example is illustrated in Figure 9.4, which shows the vibrating host structure
and the vibration absorber as disconnected parts. Three points are of interest on the host structure.
The structure is excited at point 1. Point 2 is where the vibration absorber is attached and point
3 is any point on the structure. The host structure alone can be described in terms of a matrix of
FRFs as

⎧
⎪
⎨
⎪⎩

X1
X2
X3

⎫
⎪
⎬
⎪⎭
=
⎡
⎢
⎢⎣

H11 H12 H13
H21 H22 H23
H31 H32 H33

⎤
⎥
⎥⎦

⎧
⎪
⎨
⎪⎩

F1
F2
F3

⎫
⎪
⎬
⎪⎭
, (9.6)

where Xi and Fj are the complex amplitudes of the displacement at point i and forces at point j,
respectively, and Hij are the receptance FRFs between these points. The vibration absorber can be
described in terms of receptance at its base, which is the reciprocal of its dynamic stiffness Ka, and
is given by Brennan (1997)

Xa

Fa

= Ha = 1
Ka

=
ka − 𝜔2ma + j𝜔ca

−𝜔2ma(ka + j𝜔ca)
. (9.7)

Vibrating host 
structure

1

3

2 a
F1
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F3

Fa

X1

X3

Xa
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ka

ma

X2

Vibration absorber

Figure 9.4 Connecting a vibration absorber to a general vibrating system.
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When the absorber is connected to the vibrating structure, the following conditions apply:

F3 = 0 (no force applied),

F2 = −Fa (force equilibrium),

X2 = X3 (continuity of displacement)

Applying these conditions, Eqs. (9.6) and (9.7) combine to give

X3

F1

= H31 −
H21H32

H22 + Ha
(9.8a)

This is a general formulation from which the vibration at other points can be determined.
For example, if points 1 and 2 are of interest, then in the formulation of Eq. (9.8a), 3 can be
replaced with 1 and 2, respectively, to give

X1

F1

= H11 −
H21H12

H22 + Ha
, (9.8b)

X2

F1

=
H21Ha

H22 + Ha
, (9.8c)

and if the absorber is moved to the source position, then Eq. (9.8a) becomes

X3

F1

=
H31Ha

H11 + Ha
. (9.8d)

Thus, the vibration absorber affects the vibration of different points on the structure in different
ways. It is most effective, globally, when it is placed close to the source. From Eq. (9.7), note that
when the forcing frequency is equal to the natural frequency of the vibration absorber, i.e. when
𝜔 =

√
ka∕ma, and if damping is small, the absorber behaves as a damper with an equivalent

damping coefficient of maka/ca. Thus, the vibration absorber can add a large amount of damping
to a host structure, but over a limited bandwidth.

9.4.2 Effect of a Vibration Absorber on an SDOF System

A convenient way to illustrate the way in which a vibration absorber suppresses vibration is to
investigate the way it affects the vibration of an SDOF system. Such a system with a vibration
absorber attached is shown in Figure 9.5a, which can be considered in terms of its component
parts as shown in Figure 9.5b. Note that the excitation force and the displacement responses are
shown in terms of frequency domain quantities, where F is the amplitude of the harmonic excita-
tion force, and X , Xa are the complex displacement amplitudes of the masses of the host structure
and absorber, respectively. The displacement of the host structure mass per unit input force is
given by

X
F

= 1
K + Ka

, (9.9)

where Ka = 1/Ha is the dynamic stiffness of the absorber, which is given by the reciprocal of
Eq. (9.7), and K is the dynamic stiffness of the host structure given by K = k−𝜔2m+ j𝜔c. To simplify
the analysis, the damping in the host structure is set to zero. Substituting for K and Ka in Eq. (9.9)
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Figure 9.5 A vibration absorber attached to an SDOF host structure or a single mode of the host structure:
(a) physical diagram, (b) dynamic stiffness model of the system.

and noting that 𝛾 = 𝜔n/𝜔a, 𝜇 = ma/m, 𝜁a = ca∕(2
√

maka), and Ω = 𝜔/𝜔n in which 𝜔n =
√

k∕m,
results in

kX
F

=
1 − 𝛾2Ω2 + j2𝜁a𝛾Ω

𝛾2Ω4 − (1 + 𝛾2 + 𝜇)Ω2 + 1 + j2𝜁a𝛾Ω(1 − (1 + 𝜇)Ω2)
. (9.10)

Noting that
kXa

F
= kX

F

Xa

X
, and

Xa

X
=

ka + j𝜔ca

ka − 𝜔2ma + j𝜔ca
, which is the displacement transmissi-

bility between the mass of the host structure and the absorber mass, results in

kXa

F
=

1 + j2𝜁a𝛾Ω
𝛾2Ω4 − (1 + 𝛾2 + 𝜇)Ω2 + 1 + j2𝜁a𝛾Ω(1 − (1 + 𝜇)Ω2)

. (9.11)

It can be seen that the factors which determine the dynamics of the host structure with a vibra-
tion absorber attached are the mass ratio 𝜇, the natural frequency of the absorber compared with
the natural frequency of the host structure 𝛾 , and the absorber damping ratio 𝜁a. Various opti-
mum parameters have been proposed (Den Hartog, 1956), but the following parameters result in
an effective practical absorber

𝜇 = 0.05, (9.12a)

𝛾 = 1 + 𝜇, (9.12b)

𝜁a(opt) =

√
3𝜇

8(1 + 𝜇)3 . (9.12c)

Equation (9.10) is plotted in the lower part of Figure 9.6 for 𝜇 = 0.05 and 𝛾 = 1+𝜇 for various
values of damping. By setting the natural frequency of the absorber as in Eq. (9.12b), the amplitudes
of vibration at points A and B in Figure 9.6 become the same. It can be seen that if the damping is
very small, then although the vibration at the natural frequency of the absorber is small, there is a
large response around the two resonance frequencies of the composite system. If the damping is
very large, then the relative motion of the absorber mass compared with that of the host structure
mass is very small and so the absorber is ineffective. The optimum damping given by Eq. (9.12c)
ensures that the maximum amplitude of vibration is approximately the same as that at points A
and B. Thus, the absorber has the effect of achieving a relatively ‘flat’ FRF at frequencies close to
the resonance frequency of the host structure (Ω= 1), which is due to the targeted high (optimum)
damping characteristic of the absorber in this frequency region.
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Figure 9.6 Normalised displacement FRFs of the absorber mass and the host structure mass due to force
excitation of the host structure.

The corresponding vibration of the absorber mass is plotted in the top part of Figure 9.6 using the
same parameters. It can be seen that when 𝜁a ≤ 𝜁a(opt), then at the resonance frequency of the host
structure alone (Ω = 1), the amplitudes of the FRFs have a similar value, which is independent of
damping. This value can be approximately determined by setting Ω = 1 in Eq. (9.11) and noting
that 2𝜁a𝛾 ≪ 1, which results in |kXa∕F|Ω = 1 ≈ 1/𝜇, i.e. the displacement of the absorber mass at
this frequency is governed by the mass ratio. If the absorber mass is required to vibrate less due to
design constraints, then the absorber mass should be increased.

9.4.3 Vibration Absorber Attached to an SDOF System – Virtual Experiment

In many practical situations a vibration absorber is fitted retrospectively to a structure where the
vibration is too large. There are many case studies which demonstrate this, but a particularly
high-profile case is the vibration of the millennium bridge in London (Newland, 2003; Belykh
et al., 2021). To illustrate the design process for a simple structure, an SDOF system is considered.
An experiment is often carried out to determine the mass and natural frequency of this system.
Such an experiment is illustrated in Figure 9.7. The host structure is excited using an electrody-
namic shaker and the accelerance is measured, the modulus of which is plotted in the lower part
of Figure 9.7. It can be seen that the natural frequency can be determined approximately from
the frequency of the resonance peak (for a lightly damped structure), and the high-frequency
asymptote gives the mass. The process of carrying out a virtual experiment on the host structure
alone is described in MATLAB Example 9.5a below.
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Figure 9.7 Experiment to measure the accelerance of the host structure, and from this to determine the
mass and natural frequency.

MATLAB Example 9.5a

In this example, the accelerance FRF for the host SDOF is measured in a virtual experiment in
which the shaker is driven with random noise as shown in Figure 9.7.

clear all

%% Parameters

% host structure

m=1; % [kg]

k=1e4; % [N/m]

wn=sqrt(k/m); % [rad/s]

z=0.01;c=2*z*sqrt(k*m); % [ ,Ns/m]

% shaker

ms = 0.1; % [kg]

ws=2*pi*10; % [rad/s]

ks=wsˆ2*ms; % [N/m]

zs=0.1; cs=2*zs*sqrt(ms*ks); % [ ,Ns/m]

%% FRF calculation

fs=1000;df=0.01;dt=1/fs; % [Hz,s]

f=0:df:fs/2; w=2*pi*f; % [Hz,rad/s]

H=1./(k-w.ˆ2*m+j*w*c); % [m/N]

Ha=-w.ˆ2.*H; % [m/Ns2]

% mass

% stiffness

% natural frequency

% damping ratio and coefficient

% mass

% natural frequency (rad/s)

% stiffness

% damping

% frequency/time parameters

% frequency vector

% receptance

% accelerance

(Continued)
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MATLAB Example 9.5a (Continued)

%% IRF

Hd=[Ha fliplr(conj(Ha))]; % [m/N]

Ht=Hd(1:length(Hd)-1); % [m/N]

h=fs*ifft(Ht); % [m/Ns]

%% Input and output

T=250;t=0:dt:T; % [s]

fe = randn(1,length(t)); % [N]

fe=fe-mean(fe);

K=1./H; % [N/m]

Ks=ks-w.ˆ2*ms+j*w*cs; % [N/m]

Fe=K./(K+Ks); % [N]

G=[Fe,fliplr(conj(Fe(1:length(Fe)-1)))];

g=fs*ifft(G); % [N/s]

fes = conv(real(g),fe)/fs; % [N]

fes = fes(1:length(fe)); % [N]

N=length(fes);

a = conv(h,fes)/fs; % [m/s2]

a = a(1:length(fe)); % [m/s2]

%% Frequency domain calculations

Na = 8;

nfft=round(N/Na);

noverlap=round(nfft/2);

Sff=cpsd(fes,fes,hann(nfft),noverlap,nfft,fs);

Saa=cpsd(a,a,hann(nfft),noverlap,nfft,fs);

He=tfestimate(fes,a,hann(nfft),noverlap,nfft,fs);

CoHe=mscohere(fes,a,hann(nfft),noverlap,nfft,fs);

dff=1/(nfft*dt); ff=0:dff:fs/2;

%% Plot of the results

figure

plot(t,fes,'linewidth',2)

axis square; axis([0,250,-6,6]); grid

xlabel('time (s)'); ylabel('force (N)');

figure

plot(t,a,'linewidth',2)

axis square; axis([0,250,-8,8]); grid

xlabel('time (s)');ylabel('acceleration (m/sˆ2)');

figure

semilogx(ff,10*log10(abs(Sff)),'linewidth',4)

axis square; axis([1,1000,-50,-10]); grid

xlabel('frequency (Hz)');

ylabel('force PSD (dB ref 1 Nˆ2/Hz)');

figure

semilogx(ff,10*log10(abs(Saa)),'linewidth',4)

axis square; axis([1,1000,-80,20]); grid

xlabel('frequency (Hz)');

ylabel('acc. PSD (dB ref 1 mˆ2/sˆ4Hz)');

% form the double-sided spectrum

% set the length of the FRF

% calculation of the IRF

% signal duration; time vector

% random signal

% set the mean to zero

% dynamic stiffness of structure

% dynamic stiffness of shaker

% force ratio of applied force

% double sided spectrum

% IRF to determine force applied

% force applied to structure

% force applied to structure

% number of points

% acceleration response

% acceleration response

% number of averages

% number of points in the DFT

% number of points in the overlap

% PSD of force applied

% PSD of acceleration response

% FRF

% coherence

% frequency resolution/vector

% force time history

% acceleration time history

% force PSD

% acceleration PSD

(Continued)
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MATLAB Example 9.5a (Continued)

figure

semilogx(ff,20*log10(abs(He)),'linewidth',4)

hold on

plot(f,20*log10(abs(Ha)),'--k','linewidth',2)

axis square; axis([1,1000,-40,40]); grid

xlabel('frequency (Hz)');

ylabel('|accelerance| (dB ref 1 m/Nsˆ2)');

figure

semilogx(ff,180/pi*unwrap(angle(He)),'linewidth',4)

hold on

semilogx(f,180/pi*unwrap(angle(Ha)),'--k')

axis square; axis([1,1000,0,200]); grid

xlabel('frequency (Hz)');ylabel('phase (degrees)');

figure

semilogx(ff,CoHe,'linewidth',4)

axis square; axis([1,1000,0,1]); grid

xlabel('frequency (Hz)');ylabel('coherence');

figure

plot(real(He),imag(He),'linewidth',4)

hold on

plot(real(Ha),imag(Ha),'--k','linewidth',2)

axis square; axis([-30,30,0,60]); grid

xlabel('real ∖{accelerance∖} (m/Nsˆ2)');

ylabel('imag ∖{accelerance∖} (m/Nsˆ2)');

% accelerance FRF modulus

% phase

% coherence

% Nyquist plot

Results
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MATLAB Example 9.5a (Continued)
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Comments:

1. This example gives the accelerance for the SDOF host structure when it is excited using
random noise with a shaker. An exercise for the reader is to plot the mobility and receptance
FRFs.

2. From this measurement, determine the mass of the structure and the natural frequency as
shown in Figure 9.7. The parameters are needed to calculate the optimum parameters of
the vibration absorber.

Once the mass and the natural frequency of the host structure have been determined, the vibra-
tion absorber can be designed using Eqs. (9.12a)–(9.12c). The mass of the absorber is chosen first,
and in the example shown here, it is 5% of the mass of the host structure. If a larger vibration
absorber mass is used, then it vibrates proportionately less and the frequency range between the
two peaks in the FRF widens. Once the mass of the vibration absorber has been set, then its stiff-
ness and damping values may be chosen. The vibration absorber can then be designed, built, and
tested. Perhaps the most difficult parameter value to achieve in practice is the damping, as this is
often realised in combination with the stiffness element.

A vibration experiment to test the vibration absorber is shown in Figure 9.8. However, a problem
occurs in the virtual experiment described in MATLAB Example 9.5b that does not manifest itself
in the real experiment. In the virtual experiment, as in the real experiment, an input is needed
to excite the system. In the virtual experiment, however, the output is calculated using a model,
unlike in the real experiment, where the output is measured. The problem occurs due to the dynam-
ics of the model of the absorber, when excited at its base. Referring to Figure 9.4, this is because
the receptance FRF Xa∕Fa is infinite at low frequency, the mobility FRF j𝜔Xa∕Fa is infinite at
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Figure 9.8 Experiment to measure the apparent mass of the vibration absorber.

low and high frequency, and the accelerance −𝜔2Xa∕Fa is infinite at high frequency. This causes
a problem in determining the time domain output when excited by a force that has a constant
PSD as a function of frequency. A solution to the problem is to use the apparent mass, given by
Ma = Fa∕(−𝜔2Xa), to determine the force for a prescribed acceleration of the vibration absorber
base. The apparent mass is shown in the lower part of Figure 9.8, in which it can be seen that it is
constant at low frequencies, has a peak at the resonance frequency, and then decreases at higher
frequencies, tending to zero.

Thus, the apparent mass of the vibration absorber is the best model to use in the estimation of
the time histories to be used in the virtual experiment to measure the dynamic properties of the
vibration absorber in MATLAB Exercise 9.5b.

MATLAB Example 9.5b

In this example, the apparent mass of the vibration absorber to be attached to the SDOF host
structure is measured in a virtual experiment in which the shaker is excited with random noise
as shown in Figure 9.8 The base acceleration of the vibration absorber is set so that its PSD

(Continued)
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MATLAB Example 9.5b (Continued)

is constant with frequency. This could be achieved in a practical test set up by controlling the
current supplied to the shaker.

% clear all

%% Parameters

% structure

m=1; % [kg]

k=1e4; % [N/m]

wn=sqrt(k/m); % [rad/s]

% absorber

ma=0.05; % [kg]

mu=ma/m;

wa=wn/(1+mu); % [rad/s]

ka=waˆ2*ma; % [N/m]

za=sqrt(3/8*mu/(1+mu)ˆ3);

ca=2*za*sqrt(ma*ka); % [Ns/m]

% shaker

ms=0.1; % [kg]

ws=2*pi*10; % [rad/s]

ks=wsˆ2*ms; % [N/m]

zs=0.1; cs=2*zs*sqrt(ms*ks); % [ ,Ns/m]

%% FRF calculation

fs=1000;df=0.01;dt=1/fs; % [Hz,s]

f=0:df:fs/2; w=2*pi*f; % [Hz,rad/s]

Ka=ma*(ka+j*w*ca)./(ka-w.ˆ2*ma+j*w*ca); % [kg]

% mass

% stiffness

% natural frequency

% mass of absorber

% mass ratio

% absorber natural frequency

% stiffness of the absorber

% absorber damping ratio

% absorber damping coefficient

% mass

% natural frequency (rad/s)

% stiffness

% damping

% frequency/time parameters

% frequency vector

% apparent mass

%% IRF

Hd=[Ka fliplr(conj(Ka))]; % [kg]

Ht=Hd(1:length(Hd)-1); % [kg]

h=fs*real(ifft(Ht)); % [kg/s]

%% Input and output

T=250;t=0:dt:T; % [s]

a=randn(1,length(t)); % [m/s2]

a=a-mean(a); % [m/s2]

N=length(a);

fe = conv(h,a)/fs; % [N]

fe = fe(1:length(a)); % [N]

%% Frequency domain calculations

Na = 8;

nfft=round(N/Na);

noverlap=round(nfft/2);

Sff=cpsd(fe,fe,hann(nfft),noverlap,nfft,fs);

Saa=cpsd(a,a,hann(nfft),noverlap,nfft,fs);

Kae=tfestimate(a,fe,hann(nfft),noverlap,nfft,fs);

CoHe=mscohere(a,fe,hann(nfft),noverlap,nfft,fs);

dff=1/(nfft*dt);ff=0:dff:fs/2;

% form the double-sided spectrum

% set the length of the FRF

% calculation of the IRF

% signal duration; time vector

% random acceleration signal

% set the mean to zero

% force signal

% number of averages

% number of points in the DFT

% number of points in the overlap

% PSD of force signal

% PSD of acceleration signal

% apparent mass FRF

% coherence

% frequency resolution/vector

(Continued)
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MATLAB Example 9.5b (Continued)

%% Plot the results

figure

plot(t,fe,'linewidth',2)

axis square; axis([0,250,-0.2,0.2]); grid

xlabel('time (s)'); ylabel('force (N)');

figure

plot(t,a,'linewidth',2)

axis square; axis([0,250,-6,6]); grid

xlabel('time (s)');ylabel('acceleration (m/sˆ2)');

figure

semilogx(ff,10*log10(abs(Sff)),'linewidth',4)

axis square; axis([1,1000,-100,-30]); grid

xlabel('frequency (Hz)');

ylabel('force PSD (dB ref 1 Nˆ2/Hz)');

figure

semilogx(ff,10*log10(abs(Saa)),'linewidth',4)

axis square; axis([1,1000,-50,-10]); grid

xlabel('frequency (Hz)');

ylabel('acc. PSD (dB ref 1 mˆ2/sˆ4Hz)');

figure

semilogx(ff,20*log10(abs(Kae)),'linewidth',4)

hold on

semilogx(f,20*log10(abs(Ka)),'--k','linewidth',2)

axis square; axis([1,1000,-80,0]); grid

xlabel('frequency (Hz)');

ylabel('|apparent mass| (dB ref 1 kg)');

figure

semilogx(ff,180/pi*unwrap(angle(Kae)))

hold on

semilogx(f,180/pi*unwrap(angle(Ka)),'--k')

axis square; axis([1,1000,-200,0]); grid

xlabel('frequency (Hz)');ylabel('phase (degrees)');

figure

semilogx(ff,CoHe,'linewidth',4)

axis square; axis([1,1000,0,1]); grid

xlabel('frequency (Hz)');ylabel('coherence');

figure

plot(real(Kae),imag(Kae),'linewidth',4)

hold on

plot(real(Ka),imag(Ka),'--k','linewidth',2)

axis square; axis([-0.15,0.15,-0.3,0]); grid

xlabel('real ∖{apparent mass∖} (kg)');

ylabel('imag ∖{apparent mass∖} (kg)');

% force time history

% acceleration time history

% force PSD

% acceleration PSD

% apparent mass modulus

% apparent mass phase

% coherence

% Nyquist plot

(Continued)
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MATLAB Example 9.5b (Continued)

Results
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MATLAB Example 9.5b (Continued)

Comments:

1. In this virtual experiment, the vibration absorber, which is designed using the procedure
shown in Figure 9.8, is tested using an electrodynamic shaker.

2. The output from this virtual experiment is the apparent mass of the vibration absorber at
its attachment point. The apparent mass is estimated in this case because other frequency
domain quantities either tend to infinity at low or high frequencies. This means that the
IRF, which is needed to determine the output response, cannot be easily calculated (note
that this is not necessarily an issue in a real experiment). Thus, for the virtual experiment
with the vibration absorber, the PSD of the acceleration of the base, which is attached to
the shaker, is maintained at a constant level as a function of frequency. In a practical system
this could be achieved by using a control system. The PSD of the resulting force will then
vary with frequency, which can be seen in the figure.

3. An exercise for the reader is to plot the accelerance, mobility, and receptance FRFs and the
impedance and the dynamic stiffness of the base-excited absorber.

Having designed and tested the vibration absorber, its effect on the host structure can be investi-
gated by combining the measurements of the host structure alone and the vibration absorber in the
computer before assembling the physical system and testing it. Equation (9.9) can be used for this
purpose, in which the dynamic stiffness of the host structure K can be determined from the mea-
sured accelerance, and the dynamic stiffness of the vibration absorber Ka can be determined from
the measured apparent mass. It can be seen that it is a simple operation, and the result can also
be compared with model predictions. Predictions of the vibration absorber effectiveness are illus-
trated in MATLAB Example 9.5c using data measured during the virtual experiments conducted in
MATLAB Examples 9.5a and b, and this is compared with the output from a model of the coupled
system, both with and without the absorber attached. It is clear from these results that the main
effect of the vibration absorber is to add damping to the host structure.

MATLAB Example 9.5c

In this example, the measurements of the apparent mass of the host structure (calculated from
the accelerance) and the vibration absorber are combined to predict the receptance of the
host structure with the vibration absorber attached. This is then checked using a theoretical
approach in which the coupled system is considered.

% clear all

Exercise_9_5a

Exercise_9_5b

%% Measured quantities

Ha=(He'./(-(2*pi*ff).ˆ2))'; % [m/N]

Htae=(1./(Kae'+1./He')./(-(2*pi*ff).ˆ2))'; % [m/N]

% delete the figures

% delete the figures and remove

the clear all command at the

beginning of the program

% receptance of SDOF host

structure without absorber

% receptance of SDOF host

structure with absorber

(Continued)
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MATLAB Example 9.5c (Continued)

%% Check on the sum of the measured quantities

mu=0.05;

ma=mu*m; % [kg]

wa=wn/(1+mu); % [rad/s]

ka=waˆ2*ma; % [N/m]

za=sqrt(3/8*mu/(1+mu)ˆ3);

ca=2*za*sqrt(ma*ka); % [Ns/m]

n=0;df=0.01;

for fc=0:df:100 % [Hz]

n=n+1;

wc=2*pi*fc; % [rad/s]

M=[m 0; 0 ma];K=[k+ka -ka; -ka ka];

C=[c+ca -ca; -ca ca];

F=[1;0]; % [N]

D=K-wc.ˆ2*M+j*wc*C; % [N/m]

HH=inv(D)*F; % [m/N]

Hc(n)=HH(1); % [m/N]

end

fc=0:df:100; % [Hz]

%% IRF

% calculate IRF of host structure alone

Ha(1)=Ha(2);

Hd=[Ha' fliplr(conj(Ha'))]';

Ht=Hd(1:length(Hd)-1);

ha=fs*ifft(Ht);

% calculate IRF of host structure with absorber

Htae(1)=Htae(2);

Hde=[Htae' fliplr(conj(Htae'))]';

Hta=Hde(1:length(Hde)-1);

hta=fs*ifft(Hta);

TT=1/ff(2);tt=0:dt:TT;

%% Figures

figure

semilogx(ff,20*log10(abs(Ha)))

hold on

semilogx(f,20*log10(abs(H)),':k')

hold on

semilogx(ff,20*log10(abs(Htae)))

hold on

semilogx(fc,20*log10(abs(Hc)),'--k')

axis square; axis([1,100,-120,-40]); grid

xlabel('frequency (Hz)');

ylabel('|receptance| (dB ref 1 m/N)');

figure

semilogx(ff,180/pi*unwrap(angle(Ha)))

hold on

semilogx(f,180/pi*unwrap(angle(H)),':k')

hold on

% mass ratio

% mass of the vibration absorber

% tuned frequency of the absorber

% stiffness of the absorber

% optimum absorber damping ratio

% optimum absorber damping coeff.

% frequency resolution

% excitation frequency

% mass, stiff. and damp. matrices

% excitation force vector

% dyn. stiff. of complete system

% receptance vector

% receptance of host-structure

% frequency vector

% remove infinity at zero Hz

% form the double-sided spectrum

% set the length of the FRF

% calculation of the IRF

% remove infinity at zero Hz

% form the double-sided spectrum

% set the length of the FRF

% calculation of the IRF

% time vector

% modulus of the receptance FRF

(Continued)
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MATLAB Example 9.5c (Continued)

semilogx(ff,180/pi*unwrap(angle(Htae)))

hold on

semilogx(fc,180/pi*unwrap(angle(Hc)),'--k')

axis square; axis([1,100,-200,0]); grid

xlabel('frequency (Hz)');ylabel('phase (degrees)');

figure

plot(tt,ha,'linewidth',2,'color',[0.6 0.6 0.6])

hold on

plot(tt,hta,'k','linewidth',2)

axis square; axis([0,3,-12e-3,12e-3]); grid

xlabel('time (s)');ylabel('IRF (m/Ns)');

% phase of the receptance FRF

% displacement IRF

Results
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MATLAB Example 9.5c (Continued)

0.01

–0.01

0.005

–0.005

0

IR
F

 (
m

/N
s)

Time (s)

0 1 2 3

Host-structure alone

Host-structure with absorber

Comments:

1. In this exercise the receptance FRF of the SDOF host structure with the vibration absorber
is compared with corresponding FRF of the host structure alone. The FRF is estimated
two ways. One is by combining the measurements of the host structure and the vibration
absorber that were carried out separately, and the other is by a theoretical approach in
which the combined host structure and vibration absorber are described in terms of coupled
differential equations of motion.

2. The displacement IRF of the host structure with the vibration absorber is also calculated
and compared with the displacement IRF of the host structure alone. The effect of pre-
dominantly adding damping by attaching an optimally tuned vibration absorber is evident
as the vibration decays away much more quickly when the absorber is attached. However,
the additional dynamics due to the attachment of the vibration absorber is also evident as
the envelope of the IRF does not decay away monotonically as it does when the vibration
absorber is not attached.

3. The approach, in which the measured apparent masses of the host structure and the vibra-
tion absorber are combined, is one that can be used in practice to predict the effectiveness
of the vibration absorber.

4. An exercise for the reader is to modify the program in MATLAB Example 9.1 to carry out the
virtual experiment shown in Figure 9.9 to measure the receptance FRF of the host structure
with and without the vibration absorber attached. Check that the FRFs are the same as
shown in this example.

5. Exercises for the reader are to:
(a) change the mass of the vibration absorber and investigate the effect that this has on the

vibration of the host structure,
(b) detune the vibration absorber and investigate the effect that this has on the receptance

FRF of the host structure,
(c) investigate the effect on the receptance FRF of the host structure when the damping in

the vibration absorber is changed from its optimum value.
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Figure 9.9 Experiment to measure the effectiveness of the vibration absorber.

A final check on the dynamic behaviour of the host structure with the absorber attached can be
carried out as shown in Figure 9.9. The results should be the same as in the lower part of Figure 9.9,
and in the case when the measurements of the host structure and the vibration absorber are com-
bined in the computer as shown in MATLAB Example 9.5c. In a practical situation there may be
some differences from the ideal behaviour, which could be due to the following:

● When the absorber is attached to the host structure, the mass of the vibration absorber (which
has been assumed to be zero) is added to the mass of the host structure. This changes the mass
ratio, which in turn affects the optimum stiffness and damping of the vibration absorber.

● The connection between the vibration absorber and the host structure may not have zero damp-
ing and infinite stiffness. This will also change the natural frequency of the vibration absorber,
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and hence the optimum frequency to which it should be tuned, and the damping added to the
host structure. This problem can be partially overcome by allowing the vibration absorber stiff-
ness and damping to be adjusted in situ.

9.4.4 Vibration Absorber Attached to a Cantilever Beam – Virtual Experiment

In the previous section, the effect of attaching a vibration absorber, tuned according to Den Hartog’s
method (Den Hartog, 1956), was investigated for an SDOF host structure. In practical situations,
however, most structures are MDOF systems. In this section, the effect on the vibration of an
MDOF system due to the attachment of a vibration absorber is investigated. To illustrate the effect,
a cantilever-beam host structure, such as that discussed in Section 9.3, is considered. The specific
set-up is shown in Figure 9.10. The beam is excited by a shaker close to the root of the beam, and
the vibration absorber is attached at the tip of the beam. The numbers 1–3 in the circles correspond
to those in Figure 9.4, and the modelling and measurements of the system are based on this generic
framework, which is described in Section 9.4.1.

The vibration absorber is designed according to Den Hartog’s method, such that it predominantly
adds damping to particular mode of a structure, where the natural frequencies of the structure are
well separated, such as for a lightly damped beam. In this case the vibration close to the targeted
natural frequency is dominated by that mode. For example, for frequencies close to the p-th mode
of vibration, the point receptance FRF at position xi, where the vibration absorber is attached, can
be approximated by,

W(xi)

F(xi)
≈

(Aii)p

𝜔2
p − 𝜔2 + j2𝜁p𝜔𝜔p

, (9.13)

The modal mass for the beam at this position is thus given by mp = 1/(Aii)p. The vibration absorber
with mass ma has a mass ratio of 𝜇 = ma/mp, and its natural frequency and damping can be chosen
according to Eq. (9.12).

Schematic diagrams of the measurements required to determine the optimum parameters for
the vibration absorber, and to predict the vibration of the beam when the vibration absorber is
attached, are shown in Figure 9.11. The shaker is first positioned at the free end of the beam, which
corresponds to point 14 in Figure 9.3. Note that the shaker is not shown in the figure for clarity, but
the amplitude of the force it applies to the beam is F14. The point receptance of the beam is then

w1

fe

Shaker

Force

gauge

w14w7

Beam

caka

ma

1

Vibration
absorber

3 2

is

t

Figure 9.10 Experiment to measure the effective of a vibration absorber attached to a cantilever beam.
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measured. At frequencies close to the natural frequency of interest, this can be approximated using
Eq. (9.13). The two other FRFs are measured with the shaker at this position, as shown in the top
part of Figure 9.11. Note also that the beam FRFs could be measured using an impact hammer, as
discussed in Chapter 5. Once the point receptance FRF has been measured at point 14, the vibration
absorber parameters can be determined, so that the vibration absorber may be designed and built.
To complete the measurements on the beam, the shaker is moved to position 1 as shown in the
centre part of Figure 9.11. Once the beam and the vibration absorber FRFs have been measured,
the vibration of the beam with the absorber attached as shown in Figure 9.10, can be predicted
using Eq. (9.8a), which can be written as

W i

F1

= Hi1 −
H21Hi2

H22 + Ha
, (9.14)

where the subscripts correspond to the numbers in the circles and i = 1, 2, 3 correspond to the
measurement position of interest. The predicted FRFs corresponding to the three measurement
points, i, due to excitation at point 1, are shown in MATLAB Example 9.6. The associated IRFs are
also calculated.

F1

W1 W14W7

W1 W14W7

F14

caka

Fa

ma

Wa

• Place the shaker on the beam at the position where the absorber is 
to be attached and measure the FRF               . 

• From this measurement determine the natural frequency ωp to 
target and modal mass mp. The vibration absorber can now be  
designed. 

• Measure the other FRFs             and              to enable predictions 
to be made when the absorber is attached.

W14  F14

W14  F1

W14  F1

W7  F14 W1  F14

W1  F1

Wa  Fa

W7  F1

W1  F14

• Shift the shaker to the position of the vibration source and measure 

the FRFs            ,            , and              to enable predictions to be 
made when the absorber is attached. Note that
due to reciprocity.

• Place the vibration absorber on a shaker and  
measure the FRF             to test the absorber 
and to enable predictions to be made. 

=

Figure 9.11 Experiments required to design the vibration absorber for the beam host-structure, excited as
shown in Figure 9.10.
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MATLAB Example 9.6

In this example, the effect of attaching a vibration absorber, which is tuned according to Den
Hartog’s method, to the tip of a cantilever beam is investigated.

clear all

%% Parameters

% cantilever beam

E=69e9; % [N/m2]

rho=2700; % [kg/m3]

l=0.75;b=0.02;d=0.01;S=b*d;I=b*dˆ3/12;

z=0.01;n=2*z;

Ed=E*(1+j*n); % [N/m2]

m=rho*S*l; % [kg]

% frequency parameters

fs=3000;df=0.01;dt=1/fs; % [Hz,s]

f=0:df:fs/2;w=2*pi*f; % [Hz,rad/s]

%% Positions along the beam

xp=0.1:0.05:l; % [m]

fp=1;

ap=14;

op=14;

%% Beam FRFs

n=0;

for x=0.1:0.05:l; % [m]

n=n+1;

xf=xp(fp); % [m]

[Htt,wnn] = calcFRF(E,I,rho,S,z,m,l,x,xf,w,fs);

H1(n,:)=Htt; % [m/N]

xf=xp(ap); % [m]

[Htt,wnn] = calcFRF(E,I,rho,S,z,m,l,x,xf,w,fs);

H2(n,:)=Htt; % [m/N]

end

%% Modal properties (first 3 modes)

x=0.1:0.05:l; % [m]

fn=wnn/(2*pi); % [Hz]

z1=(8.27-8.07)/(2*fn(1));

% Young's modulus of aluminium

% density of aluminium

% geometrical parameters

% damping ratio and loss factor

% complex Young's modulus

% mass of the beam

% frequency parameters

% frequency vector

% positions along the beam

% force position in displ. vector

% absorber position

% measurement position

% position of excitation force

% calculate beam FRFs and IRFs

% beam FRFs wrt excitation force

% position of absorber

% calculate beam FRFs and IRFs

% beam FRFs wrt absorber position

% position along the beam

% natural freqs. in Hz

% 1st modal damping ratio

z2=(51.73-50.73)/(2*fn(2));

z3=(144.8-141.9)/(2*fn(3));

xx1=max(abs(H2(ap,700:1000))); % [m/N]

xx2=max(abs(H2(ap,5000:5500))); % [m/N]

xx3=max(abs(H2(ap,14000:15000))); % [m/N]

A1=xx1.*(2*z1*wnn(1)ˆ2); % [1/kg]

A2=xx2.*(2*z2*wnn(2)ˆ2); % [1/kg]

A3=xx3.*(2*z3*wnn(3)ˆ2); % [1/kg]

%% Vibration absorber design

mu=0.05;

ma=0.05/A1; % [m]

% 2nd modal damping ratio

% 3rd modal damping ratio

% max value of 1st modal response

% max value of 2nd modal response

% max value of 3rd modal response

% 1st modal constant

% 2nd modal constant

% 3rd modal constant

% mass ratio

% mass of absorber for 1st mode

(Continued)
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MATLAB Example 9.6 (Continued)

wa=wnn(1)/(1+mu); % [rad/s]

ka=waˆ2*ma; % [N/m]

za=sqrt(3/8*mu/(1+mu)ˆ3);

ca=2*za*sqrt(ma*ka); % [Ns/m]

Ka=-w.ˆ2.*ma.*(ka+j*w*ca)./(ka-w.ˆ2*ma+j*w*ca);

Ha=1./Ka; % [m/N]

%% FRF of beam with absorber attached

H1c=H1(op,:)-H1(ap,:).*H2(op,:)./(H2(ap,:)+Ha);

%% IRFs

% host structure alone

Hd=[H1(op,:) fliplr(conj((H1(op,:))))];

Ht=Hd(1:length(Hd)-1);

ha=fs*ifft(Ht); % [m/Ns]

% host structure with absorber

Hde=[H1c fliplr(conj(H1c))];

Hta=Hde(1:length(Hde)-1);

hta=fs*ifft(Hta); % [m/Ns]

TT=1/f(2);tt=0:dt:TT; % [s]

%% Figures

figure

semilogx(f,20*log10(abs(H1(op,:))),'linewidth',4)

hold on

semilogx(f,20*log10(abs(H1c)),'k','linewidth',2);

axis square; axis([1,1000,-160,-40]); grid

xlabel('frequency (Hz)');

ylabel('|receptance| (dB ref 1 m/N)');

figure

plot(tt,ha,'linewidth',2,'color',[0.6 0.6 0.6])

hold on

plot(tt,hta,'linewidth',2,'color',[0.3 0.3 0.3])

axis square; axis([0,3,-15e-3,15e-3]); grid

xlabel('time (s)');ylabel('IRF (m/Ns)');

%% Function

function [Htt,wnn]=calcFRF(E,I,rho,S,z,m,l,x,xf,w,fs)

nmax=10;

% absorber nat. freq. (1st mode)

% stiffness of the absorber

% absorber damping ratio

% absorber damping coefficient

% absorber dynamic stiffness

% absorber receptance

% Beam FRF with absorber attached

% form the double-sided spectrum

% set the length of the FRF

% calculation of the IRF

% form the double-sided spectrum

% set the length of the FRF

% calculation of the IRF

% time vector

% modulus of the receptance FRF

% IRF

% function to calculate FRF

% number of modes

kl(1)=1.87510;kl(2)=4.69409;kl(3)=7.85476;

kl(4)=10.9956;kl(5)=14.1372;

n=6:nmax;

kl(n)=(2*n-1)*pi/2;

for n=1:nmax

A=(sinh(kl(n))-...

sin(kl(n)))./(cosh(kl(n))+cos(kl(n)));

phi1=cosh(kl(n)*xf/l)-cos(kl(n)*xf/l)-...

A.*(sinh(kl(n)*xf/l)-sin(kl(n)*xf/l));

phi2=cosh(kl(n)*x/l)-cos(kl(n)*x/l)-...

% kl values 1-3

% kl values 4,5

% kl values > 5

% response position

(Continued)
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MATLAB Example 9.6 (Continued)

A.*(sinh(kl(n)*x/l)-sin(kl(n)*x/l));

wn=sqrt((E*I)./(rho*S))*(kl(n)).ˆ2;

wnn(n)=wn;

Ht(n,:)=phi1*phi2./(m*(wnˆ2-w.ˆ2+j*2*w*wn*z));

end

Htt=sum(Ht);

end

% natural frequency

% FRF of each mode

% overall receptance FRF

Results
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MATLAB Example 9.6 (Continued)

Comments:

1. In this exercise the receptance formulation was used to investigate the effectiveness of a
vibration absorber on an MDOF system such as a cantilever beam. The optimum parameters
of the absorber were calculated using the point receptance of the beam at the vibration
absorber attachment point.

2. The effectiveness of the vibration absorber was illustrated using both FRFs and IRFs at
several measurement positions on the beam.

3. An exercise for the reader is to modify the programs used in MATLAB Examples 9.5a–c to
carry out a virtual experiment to:
(a) measure the point receptance FRF of the beam at the vibration absorber attachment

point on the beam so that the vibration absorber properties can be determined,
(b) measure various FRFs on the beam with and without the vibration absorber attached.

4. Further exercises for the reader are to:
(a) place the vibration absorber at different points on the beam and determine the effect

on the vibration at other measured points,
(b) tune the vibration absorber to the second and third natural frequencies and investigate

the effect that this has on the resulting beam vibration in both the frequency and time
domains,

(c) change the mass of the vibration absorber and investigate the effect that this has on the
vibration of the beam,

(d) detune the vibration absorber and investigate the effect that this has on the vibration
of the beam,

(e) investigate the effect of changing the damping in the vibration absorber from its opti-
mum value.

9.5 Summary

In this chapter, many of the topics discussed in previous chapters have been used in the conduct of
some virtual experiments for multi-degree-of-freedom (MDOF) systems. Two structures have been
studied. One was a 2DOF lumped parameter system that has both resonance and anti-resonance
frequencies, and the other was a cantilever beam that has distributed mass and stiffness. The
beam has an infinite number of DOF, but it was modelled as a finite DOF system using the modal
approach described in Chapter 8 to capture the dynamics within a finite frequency range. It was
shown how to estimate the mode shapes of a structure using the measured FRFs and to construct
a modal model based on measured data.

The addition of a vibration absorber to two structures has been considered. One of these struc-
tures was an SDOF system, and the other was a beam system in which many DOF were considered.
The choice of the optimum parameters for the vibration absorber was made by considering the
dynamic properties of the host structure, in particular the point receptance at the point where the
absorber was attached. The receptance approach to predict the dynamic behaviour of the host struc-
ture with and without the absorber attached has been illustrated. The formulation of this approach
is summarised in Figure 9.12. This was described in Section 9.4.1 and involves the estimation of
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Figure 9.12 Schematic diagram showing the dynamics of a host structure and a vibration absorber.

receptances, and combining these to predict the dynamic behaviour of the host structure with the
absorber attached. The displacement of point i on the host structure dues to a force applied at
point 1 with an absorber attached at point 2 is given by

W i

F1

= Hi1 −
H21Hi2

H22 + Ha
(9.15)



�

� �

�

258 9 Multi-Degree-of-Freedom (MDOF) Systems: Virtual Experiments

where Hij is the receptance FRF between points i and j, and Ha is the receptance FRF of the vibra-
tion absorber, which is related to the apparent mass Ma, by Ma = 1/(−𝜔2Ha). The optimum stiffness
of the absorber for a lightly damped host structure, which has well-separated natural frequencies,
is given by ka = 𝜔2

ama, where ma is the chosen mass of the vibration absorber and 𝜔a = 𝜔p(1+𝜇),
where 𝜔p is the natural frequency of the p-th mode (the targeted mode) and 𝜇 = ma/mp, in which
mp = 1/(A22)p, where (A22)p is the amplitude of the point receptance of the host structure at the
targeted natural frequency where the absorber is to be attached. Following the design methodology
given by (Den Hartog, 1956), the absorber damping is given by 𝜁a(opt) =

√
3𝜇∕[8(1 + 𝜇)3].
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Appendix A

Numerical Differentiation and Integration

In vibration engineering, time domain measurements are most often made using displacement,
velocity, or acceleration sensors. Moreover, the data are often stored as sampled time histories in a
computer. There is often a requirement to view the data in another form to that measured. For
example, the displacement of a system may be of interest, but acceleration is measured due to
the availability of transducers. It is thus necessary to be able to differentiate and integrate signals
numerically, which are operations that can be carried out in either the time or frequency domain.

A.1 Differentiation in the Time Domain

Consider part of a velocity signal as a function of time ẋ (t), as shown in Figure A.1. If they are
sampled data, the simplest way to differentiate the signal to determine the acceleration is to use a
finite difference approximation. To illustrate this approach, a straight line is drawn between two
points, ẋ

(
t1
)
, which is the velocity at time t1, and ẋ

(
t1 + Δt

)
, which is the velocity Δt seconds later.

The gradient of this line, which is an approximation of the acceleration at a time (t1 +Δt/2), is
given by

ẍ
(

t1 +
Δt
2

)
≈

ẋ
(

t1 + Δt
)
− ẋ

(
t1
)

Δt
. (A.1)

Equation (A.1) is easily calculated in MATLAB (Lindfield and Penny, 2012) and is illustrated using a
sine wave in MATLAB Example A.1. Note that the derivative is readily checked in this case because
if ẋ (t) ≈ sin𝜔t, then ẍ (t) ≈ 𝜔 cos𝜔t. Note also that if there are n points in the velocity vector, then

x(t)

x t1 + �t

t1 + �tt1 t

�t

x  t1

Figure A.1 Part of a velocity signal as a function of time.

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations

http://www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
Pavilion
#custom



�

� �

�

260 Appendix A Numerical Differentiation and Integration

there are n− 1 points in the acceleration vector, which is a result of using the finite difference
method.

A.2 Integration in the Time Domain

Consider again, part of a velocity signal as a function of time ẋ (t), as shown in Figure A.1. The sim-
plest way to integrate the signal to determine the displacement is by cumulative integration using
the trapezoidal rule. As with differentiation, a straight line is drawn between two points, ẋ

(
t1
)
,

which is the velocity at time, and ẋ
(

t1 + Δt
)
, which is the velocity Δt seconds later. The displace-

ment of the signal at time (t1 +Δt) is the displacement at time t1 plus the area under the velocity
curve between time (t1 +Δt) and time t1, which is approximated by the area of the trapezium, i.e.

x
(

t1 +
Δt
2

)
≈ x

(
t1
)
+ Δt

2
(

ẋ
(

t1 + Δt
)
+ ẋ

(
t1
))
. (A.2)

Equation (A.2) is easily calculated in MATLAB and is illustrated using a sine wave in MATLAB
Example A.1. Note that the integral is readily checked in this case because if ẋ (t) ≈ sin𝜔t, then
x (t) ≈ −1

𝜔
cos𝜔t + x (0). Note also that if there are n points in the velocity vector, then there are n

points in the displacement vector, and the initial displacement needs to be known (which is the
constant of integration).

MATLAB Example A.1

In this example the acceleration and displacement are calculated from a sinusoidal velocity
signal.

clear all

%% Time vectors
dt=0.05; dt1=0.001; % [s]
T=1; % [s]
t=0:dt:T; t1=0:dt1:T; % [s]
f=1; % [Hz]
w=2*pi*f; % [rad/s]

%% Velocity
v=sin(w*t1); % [m/s]
vm=sin(w*t); % [m/s]

%% Differentiation
a=w.*cos(w*t1); % [m/s2]
am=diff(vm)/dt; % [m/s2]
tt=dt/2:dt:T-dt/2; % [s]

%% Integration
x=-1/w*cos(w*t1); % [m]
xt=cumtrapz(vm)*dt + x(1); % [m]

% time resolution in seconds
% duration of time signal
% time vectors
% frequency in Hz
% frequency in rad/s

% velocity - high time resolution
% velocity - low time resolution

% acceleration - high time resolution
% numerical differentiation
% define time vector (one point less)

% displacement - high time resolution
% numerical integration

(Continued)
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MATLAB Example A.1 (Continued)

%% Plot the results
figure
plot(t1,x,t,xt,'o')
grid;axis square
xlabel('time (s)');
ylabel('displacement (m)');

figure
plot(t1,v,t,vm,'o')
grid;axis square
xlabel('time (s)');
ylabel('velocity (m/s)');

figure
plot(t1,a,tt,am,'o')
grid;axis square
xlabel('time (s)');
ylabel('acceleration (m/sˆ2)');

% displacement as a function of time

% velocity as a function of time

% acceleration as a function of time

Results
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Comments:

1. The solid lines in the graphs above are the actual signals and the circles are the sampled
data which are processed.

2. The displacement from n discrete points of velocity by numerical integration also has n
discrete points. As well as calculating the cumulative integral using the trapezoidal rule,
the initial value of the displacement is needed.

3. The acceleration calculated from the discrete points of velocity by numerical differentia-
tion is also at discrete points. These points are in between the points for velocity, and as
mentioned above, there is one less point in the acceleration vector. Accordingly, a new time
vector must be calculated.

(Continued)
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MATLAB Example A.1 (Continued)

4. The displacement and acceleration estimates improve as the time resolution increases, i.e.
as Δt reduces.

5. If the signal contains noise, the high-frequency components of the noise are amplified by
the operation of differentiation, but are attenuated by integration. This is because the ampli-
tude of acceleration is the product of the velocity amplitude and the angular frequency,
and the amplitude of the displacement is the product of the velocity amplitude and the
reciprocal of the angular frequency.

6. If integration is to be carried out on experimental data as described in this example, it is
preferable to remove the DC value and the linear trend of the data before carrying out the
integration. This is done using the detrend command in MATLAB.

7. Exercises for the reader are to:
(a) Add noise to the velocity sine wave using the randn function and investigate what

happens when the signal is differentiated and integrated.
(b) Add two sine functions together with different frequencies and phases, and investigate

the results of numerical differentiation and integration. Compare the results with the
theoretical solutions.

A.3 Differentiation and Integration in the Frequency Domain

The operations of differentiation and integration are much simpler in the frequency domain, and
these are shown in Table A.1.

Table A.1 Differentiation and integration in the time and frequency
domains.

Time domain Frequency domain

Differentiation d
dt

× j𝜔

Integration ∫ dt ÷ j𝜔

Reference

Lindfield, G.R. and Penny, J.E.T. (2012). Numerical Methods Using MATLAB®, 3rd Edition. Elsevier.
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Appendix B

The Hilbert Transform

The Hilbert transform is named after David Hilbert, a German mathematician (Hilbert, 1902), who
introduced the transform to solve a special case of the Riemann–Hilbert problem for analytic func-
tions. It has subsequently found many uses in electrical and mechanical engineering (Feldman,
2011). The Hilbert transform of x(t) is the convolution of x(t) with h(t) = 1/𝜋t (see Appendix G
for a discussion on convolution). Note that this has a singularity at t = 0. The frequency domain
representation of the Hilbert transform is

H( j𝜔) = −jsgn𝜔 =
⎧
⎪
⎨
⎪⎩

j for 𝜔 < 0
0 for 𝜔 = 0
−j for 𝜔 > 0

, (B.1)

which shows that the Hilbert transform effectively shifts the original time history x(t) by 90∘. The
Hilbert transform can be used to form the analytic signal from a time domain signal. An analytic
signal a(t) is a complex time domain signal, which has a real part that corresponds to the original
signal x(t), and the imaginary part is the Hilbert transform of x(t), i.e. x̂(t), such that

a(t) = x(t) + ĵx(t). (B.2)

The envelope of the original time history is given by |a(t)| =
√

x2(t) + x̂2(t) and the instantaneous
phase is given by 𝜙(t) = tan−1(x̂(t)∕x(t)).

To illustrate the application of the Hilbert transform, consider an amplitude- and phase-
modulated displacement signal given by

x(t) = A(t) sin(𝜔t + 𝜙(t)), (B.3)

where A(t) and 𝜙(t) are time-varying amplitude and time-varying phase, respectively, given by
A(t) = 1+ 𝛼 sin𝜔at, and 𝜙(t) = 𝛽 cos𝜔bt, in which 𝛼 and 𝛽 are modulation amplitudes and 𝜔a and
𝜔b are amplitude and phase modulation frequencies. A typical envelope together with the original
displacement signal, and the time-varying (or instantaneous) phase are shown in Figure B.1.

MATLAB Example B.1

In this example the Hilbert transform is used to calculate the envelope of a signal composed
of two sine waves that have slightly different amplitudes and closely spaced frequencies, such
that the beating phenomenon is observed.

(Continued)
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MATLAB Example B.1 (Continued)

clear all

%% Time and frequency data
dt=0.0001; % [s]
T=3;t=0:dt:T; % [s]
f=10; % [Hz]
w=2*pi*f; % [rad/s]

%% Signals and the envelope
x=1*sin(w*t); % [m]
y=0.9*sin(0.95*w*t); % [m]
z=x+y; % [m]
zh=hilbert(z); % [m]

%% Plot the results
plot(t,z,'k','linewidth',2)
hold on
plot(t,abs(zh),t,-abs(zh),'linewidth',2)
axis([0,3,-3,3])
axis square; grid
set(gca,'fontsize',16)
xlabel('time (s)');
ylabel('displacement (m)');

% time resolution
% duration of time signal and time vector
% frequency in Hz
% frequency in rad/s

% signal x
% signal y
% sum of the signals x and y
% Hilbert transform of z

% plot z and its envelope

Results
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Comments:

1. The dashed line shows the envelope of the signal. Note that the envelope has some rip-
ples at the beginning and end of the time series, which is due to the windowing effect as
discussed in Chapter 2.

2. An exercise for the reader is to generate other signals and to calculate the envelope of
these signals. Think of other ways of calculating the envelope of a signal.
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Figure B.1 Amplitude- and phase-modulated signal together with its envelope and instantaneous phase
calculated using the Hilbert transform.
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Appendix C

The Decibel: A Brief Description

The decibel (dB) is one-tenth of a bel (B) and is a relative unit of measurement. It originated in
the early twentieth century in Bell Telephone Laboratories who were quantifying signal loss in
telegraph and telephone circuits (Martin, 1929). It is named after telecommunications pioneer
Alexander Graham Bell (1847–1922). The decibel is a logarithmic quantity and is based on a ratio
of powers (or squared quantities). For example, suppose there is a measurement in terms of voltage
V , then the level V 2 with respect to a reference voltage V 2

0 , in dB is given by

Level in dB = 10log10

(
V 2

V 2
0

)
, (C.1)

where log10 denotes logarithm to the base 10. The reference level should also be stated. For example,
if the reference level V 2

0 is 1 V2, and V 2 is 100 V2, the correct way to state the result in dB would be
20 dB (ref 1 V2). This would be appropriate if a power or energy quantity is of interest. An example
in terms of mechanical systems could be if the kinetic energy of a vibrating mass is of interest.
Suppose the energy level is 0.5 J, this would be written in dB as −3 dB (ref 1 J) .

An alternative way to represent Eq. (C.1) if non-squared quantities are of interest is

Level in dB = 20log10

(
V
V0

)
. (C.2)

An example in this case could be a displacement FRF which has a value of 1× 10−3 m/N. The
value in dB would be −60 dB (ref 1 m/N) .

As the dynamic range (ratio of the largest to the smallest value) tends to be very large in FRFs of
vibrating systems, the amplitude is generally plotted on a logarithmic scale. An alternative to this
is to plot the amplitude in terms of dB, and this is often used by vibration engineers, because (after
some experience) it is easy to interpret.

The differences between the linear scale, the log10 scale, and dB scale are illustrated in Figure C.1.
The way in which the log10 and dB scales compress and stretch parts of the axis can be seen. For
example, in the linear scale, the range between 0 and 10 occupies 10% of the axis, and the range
10–100 occupies 90% of the axis, whereas on the log10 and dB axes, the range 0.01–1, and 1–100
each occupy 50% of their respective axis.
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Figure C.1 An illustration of the differences between the linear, log10, and dB scales.
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Appendix D

Numerical Integration of Equations of Motion

In some parts of this book, there is a need to generate a time series relating to the dynamic motion
of a system due to an input force. If the equation of motion for the system is known, then one con-
venient way to do this is to solve this equation numerically. As an equation of motion describes the
dynamic behaviour of a system, it involves inertia forces which are the products of masses and their
acceleration. Thus, for lumped parameter systems, the equations of motion are ordinary differen-
tial equations (ODEs) of second order. The equations can be solved numerically in MATLAB using
a specific function (ode45) as this is convenient for the systems considered in this book. In this
appendix, the way in which a differential equation can be solved numerically is outlined. It is not
the intention to treat this subject in detail as there are many specific textbooks devoted to this topic,
for example Lambert (1991), Hairer et al. (1993), Press et al. (2007), and Kreyszig (2011). Note that
the foundation for numerical analysis was laid down by Taylor in 1715 who first described a series
approximation to a function (Taylor, 1715, 21–23 [Prop. VII, Thm. III, Cor. II]). The intention is to
give the reader an appreciation of how a differential equation is solved numerically, and to provide
an example of how this may be done using MATLAB.

The method used is the classical Runge–Kutta method of fourth order with variable time
increment (step size). This algorithm is named after the German mathematicians Carle Runge
(1856–1927) and Martin Kutta (1867–1944). It uses four function values per time increment,
and the step size can be varied automatically to ensure a predetermined level of accuracy. The
Runge–Kutta method is discussed later, but first Euler’s method is discussed as it helps to explain
the principle of the method based on the Taylor series expansion of a function. As most of the
ordinary differential equations of interest in this book are functions of time, this is taken as the
independent variable.

D.1 Euler’s Method

Euler’s method is a crude method which can be used to solve first-order differential equations
numerically. It is named after the Swiss mathematician and physicist Leonhard Euler (1707–1783).
As mentioned above, second-order differential equations of time are of primary interest in this
book, so these equations must first be written in terms of first-order equations.

Consider the equation of motion of an SDOF system given by

mẍ + cẋ + kx = fe, (D.1)
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where m, k, and c are mass, stiffness, and damping, respectively, and f e is the force applied to the
mass and is a function of time t. Equation (D.1) can be written as

ẍ = 1
m
(fe − cẋ − kx). (D.2)

To apply Euler’s method, Eq. (D.2) is written in terms of two first-order differential equations, as

ẋ = y, (D.3a)

and

ẏ = 1
m
(fe − cẋ − kx), (D.3b)

which can be combined and written in vector matrix form as

ẋ = Ax + b, (D.4)

where A =

[
0 1

− k
m

− c
m

]
, b =

{
0
fe
m

}
, x =

{
x
y

}
. Equation (D.4) is solved using a step-by-step

method, starting from the initial conditions x0 at time t0. Approximate values of the vector x,
which consists of the displacement and velocity of the mass, are determined at each step. At time
ti +Δt, the vector x(ti +Δt) can be determined by adding an increment Δx to the vector x(ti) at
time ti, i.e.,

x(ti + Δt) = x(ti) + Δx. (D.5)

As the initial conditions are known, the problem becomes one of determining Δx for each time
increment Δt. Now, consider the Taylor series (Kreyszig, 2011)

x(ti + Δt) = x(ti) + Δtẋ(ti) +
(Δt)2

2
ẍ(ti) + .… (D.6)

For small values of Δt the higher powers (Δt)2, (Δt)3, etc. are small and can be neglected. Thus
Eq. (D.6) can be approximated as

x(ti + Δt) ≈ x(ti) + Δtẋ(ti), (D.7)

By comparing Eqs. (D.5) and (D.7), it can be seen that Δx ≈ Δtẋ(ti). To illustrate the approach,
the approximation to a curve for a time incrementΔt is shown in Figure D.1 for the variable x in the
vector x. The curve is approximated by the straight line which is determined using the slope of the
curve ẋ at ti. It is clear that if x changes rapidly within the time increment then there will be a large
error in the approximation. There have been many methods developed to improve the accuracy of
solution of this type, and the interested reader is referred to Press et al. (2007) for further details.

t

Errorx(ti + �t)

ti + �tti

�t

x(ti)

x(t)

Slope  x(ti)

Figure D.1 An illustration of Euler’s method in the numerical integration of a function.
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D.2 The Runge–Kutta Method

The Runge–Kutta method offers much improved accuracy compared to Euler’s method and is thus
commonly used to solve differential equations. Rather than use only the slope at the beginning of
the time step at ti, it uses an estimate of the slope at the end of the time step at ti +Δt and two
estimates of the slope at the mid-point in the time step at ti +Δt/2. It then calculates a weighted
average of the estimates of Δx to give

Δx =
ΔxA

6
+

ΔxB

3
+

ΔxC

3
+

ΔxD

6
, (D.8)

where ΔxA is related to the time derivative ẋ(ti) using x(ti), ΔxB is related to an estimate of the time
derivative ẋ(ti + Δt∕2) using x(ti) + ΔxA∕2, ΔxC is also related to the time derivative ẋ(ti + Δt∕2)
but using x(ti) + ΔxB∕2, and ΔxD is related to the time derivative of ẋ(ti + Δt) using x(ti) + ΔxC.
Thus

ΔxA = Δtẋ(ti) = Δt[Ax(ti) + b(ti)] (D.9a)

ΔxB = Δt
[

A
(

x(ti) +
ΔxA

2

)
+ b(ti + Δt∕2)

]
(D.9b)

ΔxC = Δt
[

A
(

x(ti) +
ΔxB

2

)
+ b(ti + Δt∕2)

]
(D.9c)

ΔxD = Δt[A(x(ti) + ΔxC) + b(ti + Δt)] (D.9d)

This is illustrated in Figure D.2 for the displacement x, which shows the four estimates
of the slopes used to calculate ΔxA, ΔxB, ΔxC, and ΔxD, which are then used in Eq. (D.8) to
calculate Δx.

It can be seen from Figure D.1 that the accuracy of the first-order solution, in which the function
is approximated by a straight line within the time step, is dependent on the size of the time step.
Comparing Eqs. (D.5) and (D.6), the step-by-step method can be written as

x(ti + Δt) ≈ x(ti) + Δx + e (D.10)

where the vector of errors e, is given approximately by e = (Δt)2

2
ẍ(ti). Thus, if ẍ(ti) is calculated for

each time step, then the step size can be adjusted for each time step so that the maximum error
does not exceed a certain value, which is called the tolerance. In the MATLAB ode45 function the
default maximum relative error is set to 1× 10−5.

tit ti + Δt

2

Δt

A

B

C

D

2

Δt

x(t)

Figure D.2 An illustration of the Runge–Kutta method.
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MATLAB Example D.1

Example of how to solve a second-order differential equation using ode45.m. In this
example, a single degree-of-freedom system is excited by an arbitrary force, and the resulting
response in the time domain is calculated by numerical integration of the equation of
motion.

clear all

%% Variables
m = 1; % [kg]
k = 1000; % [N/m]
z = 0.05;
c = 2*z*sqrt(m*k); % [Ns/m]

A = [0 1; -k/m -c/m];
B = [0; 1/m];

dt = 0.005; % [s]
fs = 1/dt; % [Hz]
T = 12; % [s]
df=1/T; % [Hz]
t = 0:dt:T; % [s]
f = 0:df:fs; % [Hz]
L = length(t);

%% Definition of an input force time series
f1 = zeros(size(t));
Tn = T*5/12; % [s]
Ln = round(Tn/dt);
f = [zeros(1,100), ones(1,Ln), ...
zeros(1,(length(t)-(Ln+100)))];

%% Runge-Kutta Method
n=t;

[t,x] = ode45(@(t,x) pulse(t,x,A,B,f,n),t,[0 0]);

%% Plot the results
figure
plot(t,f);axis([0,12,0,1.2])
xlabel('Time (s)')
ylabel('Input Force (N)')
figure
plot(t,x(:,1))
xlabel('Time (s)')
ylabel('Displacement (m)')
figure
plot(t,x(:,2))
xlabel('Time (s)')
ylabel('Velocity (m/s)')

function dx = pulse(t,x,A,B,f,n)
force = interp1(n,f,t);
dx=A*x+B*force;
end

% mass
% stiffness
% damping ratio
% damping factor

% system matrices

% time resolution in seconds
% sampling frequency
% duration of time signal
% frequency resolution
% time vector
% frequency vector
% number of samples

% duration of the force pulse
% number of samples in the pulse
% force time history

% dummy variable for the look up
table used interp1.m

% calculating the response due to
the force pulse

% force time history

% displacement time history

% velocity time history

% gives force f at time t
% defines system of differential

equations

(Continued)
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MATLAB Example D.1 (Continued)

Results
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Comments

1. An exercise for the reader is to change the type of force excitation to sinusoidal excita-
tion and to check that the result agrees with the steady-state theoretical prediction for an
excitation frequency, which is
(a) much less than the resonance frequency,
(b) equal to the resonance frequency,
(c) well above the resonance frequency.

2. An exercise for the reader is to reduce the value of damping to 𝜁 = 0.001 and repeat 1
above. What happens to the displacement and velocity in each case? Try to determine the
physical reason why this changes.

3. An exercise for the reader is to calculate the acceleration for the examples above using the
numerical method discussed in Appendix A.
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Appendix E

The Delta Function

The delta function is a mathematical concept that is extremely useful in vibration engineering, as
it facilitates the derivation of several important quantities such as the impulse response function
(IRF) and the discrete Fourier transform (DFT). The delta function was introduced by physicist
Paul Dirac as a tool for the normalisation of state vectors (Dirac, 1930), and so it is sometimes
called the Dirac delta function. From an engineering perspective it is probably best thought of as a
unit impulse with the condition that the duration of the impulse tends to zero. This is illustrated in
Figure E.1, which shows an impulse that has unit area, acting for a short time duration 𝜀 seconds.
If 𝜀→ 0 such that the impulse acts over an infinitesimally small time period, then the result is the
delta function 𝛿(t) defined by

𝛿(t) = 0 for t ≠ 0 and
∫

∞

−∞
𝛿(t)dt = 1. (E.1)

Note that the unit of 𝛿(t) in this case is 1/s as the unit of t is the second. An alternative repre-
sentation of the delta function is shown in Figure E.2, as the limiting case of a sinc function in
which

𝛿(t) = lim
2f→∞

(
2f ×

sin(2𝜋ft)
2𝜋ft

)
= lim

2f→∞
(2f × sinc(2ft)). (E.2)

Examining Figure E.1, it can be seen that the impulse can be thought of as being composed
of two time-shifted Heaviside or unit step functions u(t), such that the impulse I is given by
I = (1/𝜀)[u(t + 𝜀/2)−u(t − 𝜀/2)]. Letting 𝜀 = Δt and then letting Δt → 0 means that the delta
function is the same as the time derivative of u(t) such that

𝛿(t) = d
dt

u(t). (E.3)

t t

(a)

1.0
�(t)

"

1
"

(b)

Figure E.1 The unit impulse and the delta function. (a) A unit impulse. (b) Graphical representation of the
delta function.
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t

2 f

2 f × sinc(2 ft)

t = 
2 f 
1

Figure E.2 Sinc function approximation of a delta function.

E.1 Properties of the Delta Function

There are several properties of the delta function that makes it useful in the context of vibration
engineering. They are as follows:

1. The delta function is an even function, so that 𝛿(t) = 𝛿(−t).
2. A time-shifted delta function located at t = a is given by 𝛿(t − a).
3. The delta function can ‘sift out’ the value of a function at the value at which the delta function

is located. This is given by the integral of the product of the function and the delta function so
that

x(a) =
∫

∞

−∞
x(t)𝛿(t − a)dt. (E.4)

4. The sum of all frequency components in the spectrum of white noise with unit amplitude is
equal to a delta function in the time domain. This can be shown by starting with the relationship

∫

∞

−∞
e±j2𝜋ftdf = lim

fmax→∞∫

fmax

−fmax

cos 2𝜋ftdf , (E.5)

which holds because e±j2𝜋ft = cos 2𝜋ft ± jsin2𝜋ft and cos and sin are even and odd functions,
respectively. Thus lim

fmax→∞
∫

fmax
−fmax

sin 2𝜋ftdf → 0. Evaluating the integral in Eq. (E.5) results in

lim
fmax→∞

∫
fmax
−fmax

cos 2𝜋ftdf = lim
fmax →∞

(2fmax × sinc(2fmax t)), which has the same form as Eq. (E.2),

therefore ∫
∞
−∞e±j2𝜋ftdf = 𝛿(t). Also, note that ∫

∞
−∞e±j2𝜋ftdt = 𝛿(f ), which means that if a time

domain signal has a value of unity for all time, then this is equal to a delta function in the
frequency domain. These properties are illustrated in Figure E.3.

5. The scaling property of the delta function is such that 𝛿(at) = 𝛿(t)/|a| for a≠ 0. This can be
seen by starting with the integral in Eq. (E.1) but replacing 𝛿(t) with 𝛿(at). The integral can be
rewritten using a change in variable t = at (for a> 0) so that dt = (1∕a)dt and

∫

∞

−∞
𝛿(at)dt = 1

a∫

∞

−∞
𝛿(t)dt = 1

a
. (E.6a)

If a< 0, then the limits of integration change so that

∫

∞

−∞
𝛿(at)dt = 1

a∫

−∞

∞
𝛿(t)dt = 1

−a∫

∞

−∞
𝛿(t)dt = 1

−a
. (E.6b)

Therefore 𝛿(at) = 𝛿(t)/|a|.
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Figure E.3 Relationship between a delta function in one domain and its equivalent quantity in the other
domain.

E.2 Fourier Series Representation of a Train of Delta Functions

A train of delta functions is shown in Figure E.4, which is described by

i(t) =
∞∑

n=−∞
𝛿(t − nΔt), (E.7)

Following Eq. (3.9), this has a Fourier series representation of

i(t) =
∞∑

n=−∞
Inej2𝜋fnt, (E.8)

where f n =n/Δt and In = 1
Δt
∫

Δt∕2
−Δt∕2i(t)e−j2𝜋nt∕Δtdt. In the interval−Δt/2≤ t ≤Δt/2, i(t)= 𝛿(t), so using

the sifting property of the delta function given above, In = 1/Δt, which means that the train of delta
functions given by Eq. (E.7) can be written in terms of its Fourier series as

i(t) = 1
Δt

∞∑
n=−∞

ej2𝜋nt∕Δt. (E.9)

�t
t

i(t)

Figure E.4 A train of delta functions.
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Appendix F

Aliasing

When a continuous time series is sampled and the discrete Fourier transform (DFT) of the sampled
time history is calculated, the changes made by sampling can have profound effects on the resulting
spectrum. One of these effects occurs because of under sampling, which means that high-frequency
components of the original time series are not accurately captured and manifest themselves at low
frequencies. This is called aliasing and is a result of the Nyquist–Shannon sampling theorem, which
serves as a bridge between continuous-time signals and discrete-time signals. It establishes a suf-
ficient condition for a sample rate such that a discrete sequence of samples can capture all the
information from a continuous-time signal of finite bandwidth. The theorem is named after Harry
Nyquist and Claude Shannon. In 1924 Harry Nyquist determined that the number of indepen-
dent pulses that could be transmitted by a telegraph channel per unit time is limited to twice the
bandwidth of the channel (Nyquist, 1924), and in 1948, Claude Shannon articulated his sampling
theorem, which states that a signal can be completely determined if it is sampled at a frequency
which is at least twice the bandwidth of the signal (Shannon, 1948).

In vibration engineering, aliasing is most often associated with measurements, where it is impor-
tant to ensure that aliasing does not occur by setting the sampling frequency to be at least twice
that of the highest frequency in the measured signals. It is, however, equally important to be aware
that aliasing can occur when carrying out numerical simulations of vibrating systems using a com-
puter in which sampled time histories are processed. In this case aliasing always occurs even when
differential equations are solved by numerical integration as described in Appendix D.

Aliasing can be illustrated by considering the rotating vector shown in Figure F.1, which has an
arbitrary amplitude and rotates at an angular velocity of 𝜔 rad/s. The rotating vector is sampled
every Δt seconds, i.e. the sampling frequency is f s = 1/Δt Hz (or the angular sampling frequency
𝜔s = 2𝜋f s rad/s). If the angular sampling frequency is much larger than the angular velocity, as illus-
trated in the left-hand part of Figure F.1, then there is no ambiguity in the estimated frequency and
the direction of rotation of the vector – all is well. However, if the sampling frequency is reduced
so that the rotating vector is only sampled twice per revolution as shown in the central part of
Figure F.1, then it would not be possible to determine the direction of rotation. This frequency is
when 𝜔s = 2𝜔 (or f s = 2f ) and is called the Nyquist frequency, after Harry Nyquist. If the sam-
pling frequency is less than the Nyquist frequency, then aliasing occurs. This is illustrated in the
right-hand part of Figure F.1, which shows the case when 𝜔s/2<𝜔<𝜔s. It can be seen that the
rotating vector appears to rotate in the opposite direction to the actual rotation, and the appar-
ent angular velocity of the rotating vector is much slower. Generally, the rotating vector |X|e±j𝜔t is
indistinguishable from |X|e±j(𝜔+n𝜔s)t, where n is a positive integer.

Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing,
First Edition. Michael J. Brennan and Bin Tang.
© 2023 John Wiley & Sons Ltd. Published 2023 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations

http://www.wiley.com/go/brennan/virtualexperimentsinmechanicalvibrations
Pavilion
#custom



�

� �

�

280 Appendix F Aliasing
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Figure F.1 Illustration of the sampling (and aliasing) of a rotating vector.

MATLAB Example F.1

In this example, the concept of aliasing is illustrated using an animated rotating vector.

clear all

N=100;

df=2*pi/N; % [rad/s]
for phi=0:df:20*pi % [rad]
X=exp(j*phi);
x=[0 real(X)]; y=[0 imag(X)];
pause (1/(N))

th=0:0.01:2*pi; % [rad]
Z=exp(j*th);
zx=real(Z);zy=imag(Z);

%% Plot the results
plot(zx,zy,'linewidth',2,'Color',[.7 .7 .7])
hold on
plot(x,y,'k','linewidth',4)
hold on
axis([-1.2,1.2,-1.2,1.2])
axis square
hold off
end

% No. of samples per cycle
(choose 100, 2, 1.1, 0.9)
% angular resolution
% angle
% rotating vector
% x and y co-ordinates
% creates a pause between plots

% create the circle

(Continued)
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MATLAB Example F.1 (Continued)

Results

N = 100 (no aliasing)

Vector rotates

in this direction

Vector appears

to rotate in this

direction

N = 1.1 (aliasing)
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Comments

1. An exercise for the reader is to explore what happens to the rotating vector when N changes.
The two examples shown are for N = 100 samples per cycle, when no aliasing occurs, and
N = 1.1 when aliasing occurs. Also try changing the sign of the exponent so that the vector
rotates in the opposite direction.

An example of aliasing on the FRF calculated using the DFT is further studied using the recep-
tance function shown in Figure 3.11, and MATLAB Example 3.1. This involves the DFT of the dis-
placement IRF given by h(t) = 1∕(m𝜔d)e−𝜁𝜔nt sin(𝜔dt) for t ≥ 0. The theoretical receptance FRF
determined using the FT is given by Eq. (3.15b), i.e. H(j𝜔) = 1/(k−𝜔2m+ j𝜔c), for − ∞ <𝜔<∞.
Note that the receptance has frequency components for all positive and negative frequencies, i.e. its
frequency content is of infinite extent. However, because of sampling in the time domain, and the
subsequent DFT, the computed FRF is only valid in the frequency range 0<𝜔<𝜔s/2 (𝜔s = 2𝜋f s).
Thus, there are aliased components for all frequencies greater than f s/2 and less than −f s/2. This is
illustrated in Figure F.2, which shows the DFT of the displacement IRF, and the theoretical recep-
tance FRF. It is clear that at frequency f a, which is slightly less than f s/2, the DFT of the IRF shown
by the solid black circle contains tangible aliased components, because its value is greater than the
theoretical value of |H(f a)|. However, because the amplitude of the FRF reduces with the square of
frequency, the aliased high-frequency components become vanishingly small at very high frequen-
cies. At frequency f b, which is much less than f s/2, aliasing still occurs, but has much less effect,
because the amplitude of the aliases is much less than the true value of |H(f b)|.
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Figure F.2 Illustration of the effect of aliasing on the receptance FRF of an SDOF system. The DFT of the
displacement IRF at frequencies f a and f b shown by the black circle and black square consists of the values
of |H(f a)| and |H(f b)|, respectively, and infinite sums of all their aliases at positive and negative frequencies,
shown by the hollow circles and squares, respectively.

The aliased FRF for positive and negative frequencies is given by

H(alias)
+ (f ) =

∞∑
n=0

H(f + nfs) for 0 ≤ f ≤ fs (F.1)

H(alias)
− (f ) =

∞∑
n=0

H(f − nfs) for − fs ≤ f ≤ 0 (F.2)

which are plotted in the top graph Figure F.3. As noted previously
(

H(alias)
+ (f )

)∗
= H(alias)

− (f ) because
the modulus is an even function and the phase is an odd function. Also plotted in this graph is
the FT of the displacement IRF from zero frequency to ±f s/2. The aliasing effect is clear at fre-
quencies close to ±f s/2. As shown in Figure F.1 and in MATLAB Example F.1, rotating vectors in
the frequency range −f s ≤ f ≤ − f s/2 appear as rotating vectors in the frequency range 0≤ f ≤ f s/2.
This also happens to vectors rotating in the other direction. Thus, the complete aliased FRF can
be calculated by combining the aliased components with the corresponding actual components
in the manner shown in the top graph of Figure F.3. The result is shown in the centre graph in
Figure F.3, in which the combined aliased FRF for positive and negative frequencies are H

(alias)
+ (f )

and H
(alias)
− (f ), respectively.

As discussed in Chapter 3, the FRF of a sampled time history is calculated using the DFT. The
FRF shown can be compared directly with the FRF calculated using the DFT, by shifting the neg-
ative frequency components to the frequency range f s/2< f ≤ f s as shown in the bottom graph in
Figure F.3. Of course, the FRF calculated using the DFT must be scaled by dividing by the sampling
frequency for this comparison.



�

� �

�

Appendix F Aliasing 283
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These aliased components add in this way to give
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These frequency components are moved to here to give
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Figure F.3 Figure showing how the theoretical receptance FRF and the infinite sum of its aliases at
positive and negative frequencies given by H(alias)

+ (f ) and H(alias)
− (f ), respectively, are related to the DFT of

the displacement IRF.
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MATLAB Example F.2

In this example, the effects due to aliasing on the receptance FRF of an SDOF system deter-
mined from the theoretical model and that calculated using the DFT of the displacement IRF
are compared.

clear all

%% parameters
m = 10; % [kg]
k = 1000; % [N/m]
z = 0.5;
c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-zˆ2)*wn; % [rad/s]

%% Time and frequency parameters
T=10; % [s]
fs=10; % [Hz]
dt=1/fs; t=0:dt:T; % [s]
N=length(t);
df=1/T; f=0:df:fs; % [Hz]

%% IRF

h=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]

%% Calculation of DFT
H=dt*fft(h);

%% Calculation of aliased FRF
for p=1:1000
f1=(p-1)*fs:df:p*fs;
w1=2*pi*f1;

HP(p,:)=1./(k-w1.ˆ2*m+j*w1*c);
f2=-p*fs:df:-(p-1)*fs;
w2=2*pi*f2;
HM(p,:)=1./(k-w2.ˆ2*m+j*w2*c);
end

MP=sum(HP); MS=(sum(HM));
HT1=MP+MS;
HT=HT1(1:(N+1)/2);
HA=[HT fliplr(conj(HT))];
HA1=HA(1:length(f));

%% Plot the results
figure
plot(f,abs(HA1))
hold on
plot(f,abs(H),'o')
xlabel('frequency (Hz)');
ylabel('|receptance| (m/N)');

figure
plot(f,180/pi*angle(HA1))
hold on
plot(f,180/pi*angle(H),'o')
xlabel('frequency (Hz)');
ylabel('phase (degrees)');

% mass
% stiffness
% damping ratio
% damping coefficient
% undamped and damped natural
frequencies

% time window
% sampling frequency
% time resolution and time vector
% Number of points
% frequency resolution and frequency
vector

% impulse response function

% calculate the frequency range that
is included in the sum of aliases
for the theoretical FRF.
% aliased FRF for +ve freq.

% aliased FRF for -ve freq.

% summing all aliases
% total aliased FRF

% double sided spectrum

% modulus

% phase

(Continued)
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MATLAB Example F.2 (Continued)

Results
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Comments

1. An exercise for the reader is to explore what happens to the FRFs when the sampling fre-
quency and/or the frequency resolution is changed.

2. An exercise for the reader is to investigate the number of aliased frequency components
needed to be included in the theoretical FRF to give a good approximation to that calculated
using the DFT.
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Appendix G

Convolution

In the literature, convolution is generally defined as the operation between the time domain input
f (t) of a linear, time-invariant (LTI) system, and its impulse response function (IRF) h (t) to give
the time domain output x (t). It involves an integral and was first articulated by Leonhard Euler
(1768, pp. 230–255). However, it was not called convolution until many years later, as discussed by
Domínguez (2015). In 1832 Jean-Marie Duhamel (1834) derived a similar expression to that derived
by Euler, but to calculate the response of a vibrating system to an arbitrary force. For this reason, the
convolution integral is often called the Duhamel integral in the vibration literature. For a vibrating
system such as that shown in Figure G.1, convolution of the impulse response function and a force
time history is written down mathematically as

x (t) = h(t) ∗ fe (t), (G.1)

where * denotes the convolution operation. It is shown in Chapters 2 and 3 that the relationship
between the input and output in the frequency domain is given by

X( j𝜔) = H( j𝜔)F( j𝜔), (G.2)

where X (j𝜔) =  {x(t)}, H (j𝜔) =  {h(t)}, and F (j𝜔) =  {f e(t)}, in which  denotes the Fourier
transform. Comparing Eqs. (G.1) and (G.2) it can be seen that convolution in the time domain is
equivalent to multiplication in the frequency domain, and this is shown later in this appendix.
First, it is necessary to determine the mathematical details of convolution.

Consider the force time series f e(t) shown in the top part of Figure G.2. It can be considered as
a series of impulses of very short time duration Δ𝜏. One of the impulses, shown as a shaded rect-
angle, occurs at time 𝜏 such that the force at this time instant is f e(𝜏). In the middle and lower
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Figure G.1 A schematic diagram of an LTI vibrating system.
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Figure G.2 Illustration of a force input described as a series of impulses, and the response of an SDOF
system to one of the impulses (duration of Δ𝜏 is exaggerated for clarity).

parts of Figure G.2 are the impulse and the response of the system due to the impulse, respec-
tively. The magnitude of the impulse is the area of the shaded rectangle, which is f e(𝜏)Δ𝜏. The
response at time 𝜏 due to the impulse is the product of the magnitude of the impulse and the IRF,
i.e. f e(𝜏)Δ𝜏h(t − 𝜏). The total response at time t is the sum of all the responses, so that

x(t) ≈
∑

fe(𝜏)h(t − 𝜏)Δ𝜏. (G.3)

By setting Δ𝜏→ 0, the summation in Eq. (G.3) becomes

x(t) =
∫

t

0
fe(𝜏)h(t − 𝜏)d𝜏. (G.4a)

If the force is non-zero for 𝜏 < 0, then the lower integration limit of 0 can extend to −∞. Note the
convolution integral in Eq. (G.4a) includes only impulses for 𝜏 < t, and so it describes the operation
for a causal system, i.e. the output is dependent only on past inputs. An example of the convolution
of a force input to an SDOF system and the IRF of the system is shown in Figure G.3.

The convolution integral has the commutative property such that h(t) * f e(t) = f e(t) * h(t) so that
Eq. (G.4a) with a lower limit of integration of −∞ can be written as

x(t) =
∫

∞

0
fe(t − 𝜏)h(𝜏)d𝜏. (G.4b)



�

� �

�

Appendix G Convolution 289

t

ck

m

t t

fe(t)

fe(t)

fe(t)

h(t)
x(t)

x(t)
x(t)

Figure G.3 An example of convolution for an SDOF system.

If the input is a unit impulse such that it can be represented by a delta function, then by using the
sifting property of the delta function described in Appendix E shows that in this case x(t) = h(t).

MATLAB Example G.1

In this example, the convolution of a force input and the IRF of an SDOF system is illustrated
by way of an animation.

clear all

%% Parameters
m = 1; % [kg]
k = 10000; % [N/m]
z = 0.1; c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-zˆ2)*wn; % [rad/s]

%% Time and frequency parameters
fs=500; % [Hz]
T=0.5; dt=1/fs; t=0:dt:T; % [s]

%% IRF
ho=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]
hn=ho/max(ho);
tmin = min(t)-abs(max(t)-min(t))-0.2;
tmax = max(t)+abs(max(t)-min(t))+0.2;

%% Force input
N=1; N=200;
N1=round(length(t)/10); N2=length(t)-N1-N;

fo=[zeros(1,N1) ones(1,N) zeros(1,N2)];

% see MATLAB example 3.1

% see MATLAB example 3.1

% displacement IRF
% normalised IRF
% time range for plot

% use N=1 for a scaled delta func-
tion, and N=200 for step changes in
force input

% force input

(Continued)
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MATLAB Example G.1 (Continued)

%% Convolution
c = dt*conv(ho,fo);

%% Animation
h = fliplr(hn);
tf = fliplr(-t);
tf = tf + ( min(t)-max(tf) );

tc = [ tf t(2:end)];
tc = tc+max(t);
set(figure,'Position', [40, 40, 1450, 700]);
gr=[.6 .6 .6];

%% Plot the results
ax = subplot(2,1,1);
p = plot(tf, h,'k','linewidth',2); hold on
q = plot(t, fo,'linewidth',2,'Color',gr);
axis([tmin,tmax,1.2*min(hn),1.2*max(hn)])
ym = get(ax, 'ylim');
xlabel('time (s)');
ylabel('normalised IRF and force');

sl=line([min(t) min(t)],[ym(1) ym(2)]);
el=line([min(t) min(t)], [ym(1) ym(2)]);
hold on; grid on;
sg = rectangle('Position', [min(t) ym(1) 0
ym(2)-ym(1)],'FaceColor', [.9 .9 .9]);

ax2=subplot(2,1,2);
r=plot(tc,c,'k','linewidth',2);
grid on; hold on;
s=plot(tc,c,'linewidth',2,'Color',gr);
grid on; hold on;
uistack(s,'bottom');
axis([tmin,tmax,1.2*min(c),1.2*max(c)])
xlabel('time (s)');
ylabel('displacement (m)');

%% Animation
for n=1:length(tc)
pause(0.01);
tf=tf+dt;
set(p,'XData',tf,'YData',h);
sx=min(max(tf(1),min(t)), max(t));
sxa=[sx sx]; set(sl,'XData',sxa);
ex=min(tf(end),max(t));
exa = [ex ex];set(el,'XData',exa);
rpos=[sx ym(1) max(1e-6,ex-sx) ym(2)-ym(1)];
set(sg,'Position',rpos);
uistack(sg,'bottom');
set(r,'XData',tc(1:n),'YData',c(1:n));

end

% flip the IRF

% time window

% time range of output

% figure position
% grey shade

% first plot

% vertical lines for shaded region
% shaded region

% second plot

% controls animation speed

% left-hand boundary of overlap

% right-hand boundary of overlap
% shading of overlap region

% plot of convolved function

(Continued)
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MATLAB Example G.1 (Continued)

Results
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x(t) evolving with time t

System output plotted as h(t–�) moves

Comments:

1. An exercise for the reader is to explore what happens when N is set to 1. How is the system
response related to the IRF?

G.1 Relationship Between Convolution and Multiplication

To determine the relationship between convolution in the time domain and multiplication in the
frequency domain, both sides of Eq. (G.4b) are Fourier transformed to give

X( j𝜔) = {x(t)} =
∫

∞

−∞∫

∞

0
fe(t − 𝜏)h(𝜏)ej𝜔td𝜏dt. (G.5)

Letting t − 𝜏 = u, Eq. (G.5) can be written as

X( j𝜔) =
∫

∞

−∞∫

∞

0
fe(u)h(𝜏)ej𝜔(u+𝜏)d𝜏du, (G.6a)

which can be written in terms of the product of two integrals to give

X( j𝜔) =
∫

∞

−∞
fe(u)ej𝜔udu

∫

∞

0
h(𝜏)ej𝜔𝜏d𝜏. (G.6b)
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Now F ( j𝜔) = ∫
∞
−∞ fe(u)ej𝜔udu and H ( j𝜔) = ∫

∞
0 h(𝜏)ej𝜔𝜏d𝜏, which means that X (j𝜔)=F (j𝜔)H (j𝜔).

This result shows that convolution in the time domain becomes multiplication in the frequency
domain, i.e.

x(t) = fe(t) ∗ h(t)

FT FT FT

↓ ↓ ↓

X( j𝜔) = F( j𝜔) × H( j𝜔)

There is also the relationship that multiplication in the time domain becomes convolution in the
frequency domains, such that

x(t) = fe(t) × h(t)

FT FT FT

↓ ↓ ↓

X( j𝜔) = F( j𝜔) ∗ H( j𝜔)

Example G.1 Consider the impulse response of an SDOF system given by

h(t) = 1
m𝜔d

e−𝜁𝜔nt sin(𝜔dt) for t ≥ 0. (G.7)

This can be written as the product of the exponential envelope a(t) = u(t)e−𝜁𝜔nt in which u(t) is
the Heaviside function, and the oscillatory component b(t) = 1

m𝜔d
sin(𝜔dt), so that

h(t) = a(t)b(t). (G.8)

Calculating the FT of each component in Eq. (G.8) gives

H( j𝜔) = A( j𝜔) ∗ B( j𝜔), (G.9)

in which it can be seen that the FT of the envelope is convolved with the FT of the oscillatory
component to give the FRF of the system. For an SDOF system, there is analytical expression for
the FRF of the envelope, which is

A( j𝜔) = 1
𝜁𝜔n + j𝜔

, for −∞ < 𝜔 < ∞, (G.10)

where 𝜔n =
√

k∕m is the undamped natural frequency and 𝜁 = c/(2m𝜔n) is the damping ratio.
There is also an analytical expression for the FT of the oscillatory component, which is

B( j(𝜔)) = 1
j2m𝜔d

2𝜋[𝛿(𝜔 − 𝜔d) − 𝛿(𝜔 + 𝜔d)], for −∞ < 𝜔 <∞, (G.11)

where 𝜔d = 𝜔n
√

1 − 𝜁2 is the damped natural frequency. The time and frequency domain descrip-
tions of the system are illustrated in Figure G.4. It can be seen that the FRF of the system is the
convolution of the envelope with two frequency- and phase-shifted delta functions. The FRF can
be determined analytically using the convolution in the frequency domain, by first noting that
Eq. (G.9) can be written as

H( j𝜔) = 1
2𝜋 ∫

∞

−∞
A( j𝜈) B ( j(𝜔 − 𝜈))d𝜈, (G.12a)

where A( j𝜈) = 1
𝜁𝜔n+j𝜈

and B( j(𝜔 − 𝜈)) = 𝜋

jm𝜔d
[𝛿(𝜔 − 𝜔d − 𝜈) − 𝛿(𝜔 + 𝜔d − 𝜈)].
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Figure G.4 Illustration of convolution in the frequency domain for an SDOF system.

Substituting for A(j𝜈) and B(j(𝜔− 𝜈)) into Eq. (G.12a) gives

H( j𝜔) = 1
j2m𝜔d ∫

∞

−∞

1
𝜁𝜔n + j𝜈

[𝛿(𝜔 − 𝜔d − 𝜈) − 𝛿(𝜔 + 𝜔d − 𝜈)]d𝜈. (G.12b)

Using the sifting properties of the delta function shown in Appendix E results in

H( j𝜔) = 1
j2m𝜔d

(
1

𝜁𝜔n + j(𝜔 − 𝜔d)
− 1
𝜁𝜔n + j(𝜔 + 𝜔d)

)
, for −∞ < 𝜔 < ∞, (G.13a)

which simplifies to

H( j𝜔) = 1
m
(
𝜔2

n − 𝜔2 + j2𝜁𝜔𝜔n
) , for −∞ < 𝜔 < ∞. (G.13b)

It is interesting to compare the form of the FRF of the system given in Eq. (G.13a), with the FRF
of the envelope given in Eq. (G.10). It can be seen that the FRF of the system is simply the weighted
combination of two frequency-shifted FRFs of the envelope, A(j𝜔), where the frequency shift is
±𝜔d, i.e.

H( j𝜔) = 1
j2m𝜔d

[A( j(𝜔 − 𝜔d)) − A( j(𝜔 + 𝜔d))]. (G.13c)
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MATLAB Example G.2

In this example, the convolution of the FT of the envelope and the FT of the oscillatory term
of the IRF of an SDOF system is illustrated by way of an animation.

clear all

%% Parameters
m = 1; % [kg]
k = 10000; % [N/m]
z = 0.1; c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-zˆ2)*wn; % [rad/s]
fd=wd/(2*pi); % [Hz]

%% FRFs
df=0.4;f=-100:df:100; % [Hz]
w=2*pi*f; % [rad/s]
H=1./(z*wn+j*w); % [1/Hz]
HH=1./(k-w.ˆ2*m+j*w*c); % [m/N]
fr=-0.2*100:df:0.2*100;
W=zeros(length(fr),1);A=1/(2*j)*1/(m*wd);
W((length(fr)+1)/2-round(fd/df))=1/df*A;
W((length(fr)+1)/2+round(fd/df))=-1/df*A;

%% Convolvution
C=conv(W,H)*df;

% Plots
fmin = 1.5*min(f); fmax = 1.5*max(f);
Wf=fliplr(W);
ff=fliplr(-fr);
ff=ff+(min(f)-max(ff));
fc=[ff f(2:end)]; fc=fc+max(fr);
set(figure,'Position', [40, 40, 1450, 700]);

subplot(2,1,1);
HN=abs(H)/max(abs(H));WN=abs(W)/max(abs(W));
p=plot(f,HN,'k','linewidth',4);hold on
gr=[.6 .6 .6];
q=plot(fr,WN,'k','linewidth',4,'Color',gr);
axis([fmin,fmax,0,1.1])
xlabel('frequency (Hz)');
ylabel('normalised modulus');
sl=line([min(f) min(f)],[1.1 1.1],'color','k');
hold on; grid on;
sg=rectangle('Position', [min(f) 1 0 0], ...

'FaceColor', [.9 .9 .9]);

subplot(2,1,2);
CdB=20*log10(abs(C));HHdB=20*log10(abs(HH));
r=plot(fc,CdB,'k','linewidth',2);hold on
p=plot(f,HHdB,'k','linewidth',2,'Color',gr);
hold on;grid on;
axis([fmin,fmax,-120,max(CdB)+10])
xlabel('frequency (Hz)');
ylabel('modulus (dB ref 1N/m)');

% see MATLAB example 3.1

% frequency vector

% FRF of envelope
% FRF of SDOF system
% frequency vector
% W is the FRF of the oscilla-
tory term. It has units of (m/N)

% set freq. range for graph
% flip the envelope

% slide range of W
% range of convolved function
% set the position of animation

% plot of separate functions
% normalized functions
% normalized FT of envelope
% define grey colour
% normalized W

% vertical line for overlap

% shaded region

% plot of convolved values in dB

(Continued)
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MATLAB Example G.2 (Continued)

%% Animation block
for n=1:length(fc)

pause(0);
ff=ff+df;
set(q,'XData',ff,'YData',WN);
sx=min(max(ff(1),min(f)),max(f));
sxa=[sx sx];
set(sl,'XData',sxa);
ex=min(ff(end),max(f));
exa=[ex ex];
set(sl,'XData',exa);
rpos=[sx 0 max(0.0001,ex-sx) 1.1];
set(sg,'Position',rpos);
uistack(sg,'bottom');

set(p,'XData',f,'YData',HHdB);
uistack(p,'bottom');
set(r,'XData',fc(1:n),'YData',CdB(1:n));

end

% controls animation speed

% left-hand boundary of overlap

% right-hand boundary of overlap

% shading of overlap region

% plot of FRF

% plot of convolved function

Results
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Comments:

1. An exercise for the reader is to explore what happens when mass, stiffness, and damping
are changed.
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G.2 Circular Convolution

Although the time response of a vibrating system can be calculated directly using convolu-
tion in the time domain as described by Eq. (G.1), it can also be calculated via the frequency
domain by noting that x(t) =

−1{X(j𝜔)}, where X(j𝜔) = F(j𝜔)H(j𝜔), in which F(j𝜔) =  {f e(t)} and
H(j𝜔) = {h(t)}. This process is illustrated in Figure G.5, but for discrete time data which have been
sampled at a rate of 1/(Δt). In this case it is called circular convolution because sampling results
in a periodic vibration response when it is calculated via the frequency domain. It is described
mathematically by

x(nΔt) = fe(nΔt)⊛ h(nΔt) (G.14)

If the response is determined in the time domain by convolution, the duration of the force time
history and the duration of the IRF may be different. However, if the response is calculated using
circular convolution, then the time durations of the force time history and the IRF must be the
same. The difference between convolution and circular convolution is illustrated using the example
shown in Figure G.6. In this example the force involves a positive step change from zero to a DC
level and after some time a step change returns the force to zero. The force time history has a dura-
tion of T seconds, as shown in Figure G.6a. This is convolved with the IRF shown in Figure G.6a,
which also has a duration of T seconds. The result is the response x(nΔt), which has a duration
of 2T seconds, and is shown in Figure G.6a. Also shown in this figure is the response x(nΔt) cal-
culated using circular convolution. Note that the time duration of x(nΔt) calculated in this way is
only T seconds rather than 2T seconds when calculated using convolution. Any response of the
system beyond T seconds cannot, of course, be captured using circular convolution, because the
IDFT imposes a periodic structure on the IRF, as discussed in Chapter 3. With circular convolution,
the response between T seconds and 2T seconds ‘wrap around’ and is added to the actual IRF as
shown in Figure G.6a. To avoid wrap around, so that convolution and circular convolution give the
same response for the first T seconds, it is necessary to double the time duration of the force input
and the IRF by adding vectors of zeros for a time duration of T seconds. This effect is illustrated
in Figure G.6b, where it can be seen that convolution and circular convolution now give the same

Force input

IRF

IDFT

FRF

Vibrating system Displacement response

Convolution

Circular convolution

fe(nÊt)

X(kÊf ) = F(kÊf ) H(kÊf )

H(kÊf )

DFTDFT

h(nÊt)

x(nÊt) = fe(nÊt) * h(nÊt)

x(nÊt) = fe(nÊt) * h(nÊt)

F(kÊf )

Figure G.5 Determination of the response of a vibrating system by convolution in the time domain, and by
circular convolution via the frequency domain.
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Wrap around

No wrap around

(a)

(b)
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h(nÊt)

IRF

ZerosZeros Zeros

fe(nÊt)

h(t)fe(t)

x(nÊt) = f(nÊt) * h(nÊt)

x(nÊt) = fe(nÊt)  * h(nÊt)
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= fe(nÊt) * h(nÊt)

Figure G.6 Illustration of the difference between convolution and circular convolution and how to avoid
wrap around. (a) Wrap around corners and (b) no wrap around corners.

output for the first 2T seconds, which is achieved by forcing the response to be zero between T
seconds and 2T seconds.

MATLAB Example G.3

In this example, the response of an SDOF system calculated using convolution and circular
convolution is illustrated.

clear all

%% Parameters
m = 1; % [kg]
k = 10000; % [N/m]
z = 0.1; c = 2*z*sqrt(m*k); % [Ns/m]
wn=sqrt(k/m); wd=sqrt(1-zˆ2)*wn; % [rad/s]

% see MATLAB example 3.1

(Continued)
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MATLAB Example G.3 (Continued)

%% Time and frequency parameters
T=0.5; % [s]
fs=500;
dt=1/fs; t=0:dt:T; % [s]

%% IRF
ho=1/(m*wd)*exp(-z*wn*t).*sin(wd*t); % [m/Ns]
% ho((length(t)-1)/2:length(t))=0;

%% Force
N=1;N=200;
N1=25; N2=length(t)-N1-N;
fo=[zeros(1,N1) ones(1,N) zeros(1,N2)];

%% Convolution
y = dt*conv(ho,fo);
tt=0:dt:2*T;

%% Circular convolution
H=fft(ho)*dt;
F=fft(fo)*dt;
Y=H.*F;
yc=ifft(Y)*fs;

%% Plot the results
figure
plot(t,fo,'k','linewidth',2)
ylim([0,2])
axis square;grid;
xlabel('time (s)');
ylabel('force (N)');

figure
plot(t,ho,'k','linewidth',2)
axis square;grid;
xlabel('time (s)');
ylabel('displacement IRF (m/Ns)');

figure
gr=[.6 .6 .6];
plot(tt,y,'k','linewidth',2);grid on; hold on;
plot(t,yc,'–k','linewidth',2,'color',gr);
axis square;
xlabel('time (s)');
ylabel('displacement (m)');

% T needs to be changed to
1 second to remove wrap around

% IRF
% this needs to be uncommented
when T=1

% time history of force

% response by convolution
% time vector for the response

% FRF
% force spectrum
% response spectrum
% circular convolution

% force

% displacement IRF

% response by convolution
% response by circular convolution

(Continued)
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MATLAB Example G.3 (Continued)

Results
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Comments:

1. The time duration T and the IRF ho must be modified to illustrate the effect of adding zeros
to the force and IRF vectors to remove the wrap around effect.
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Some Influential Scientists in Topics Related to This Book

1550–1617 1635–1703 1643–1727

John Napier of Merchiston
was a Scottish
mathematician, physicist,
and astronomer. He is best
known as the discoverer of
logarithms. Source:
Wikimedia
Commons/Public Domain.

Robert Hooke was an
English polymath, active as a
physicist, scientist, and
architect. He is known for
Hooke’s law. Source: Mary
Beale/Wikimedia
Commons/Public Domain.

Sir Isaac Newton was an
English mathematician,
physicist, and astronomer.
He is widely recognised as
one of the greatest
mathematicians and
physicists. Source: Godfrey
Kneller/Wikimedia
Commons/Public
Domain.
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1685–1731 1700–1782 1707–1783

Brook Taylor was an
English mathematician. He
is best known for creating
the Taylor series. Source:
Dr. Manuel/Wikimedia
Commons/Public Domain.

Daniel Bernoulli was a
Swiss mathematician and
physicist. He is noted for his
applications of mathematics
to mechanics. Source:
Wikimedia Commons/Public
Domain.

Leonhard Euler was a
Swiss mathematician and
physicist. He is thought to
be one of the greatest
mathematicians in history.
Source: Jakob Emanuel
Handmann/Wikimedia
Commons / Public
Domain.

1755–1836 1768–1830 1777–1855

Marc-Antoine Parseval
was a French
mathematician, most
famous for what is now
known as Parseval’s
theorem. Source: Wikimedia
Commons/Creative
Commons CC0 License.

Jean-Baptiste Joseph
Fourier was a French
mathematician and physicist.
He is best known for the
Fourier series, which
developed into Fourier
analysis. Source:
Louis-Léopold
Boilly/Wikimedia
Commons/Public Domain

Johann Carl Friedrich
Gauss was a German
mathematician and
physicist who made
significant contributions
to many fields in
mathematics and science.
Source: Christian Albrecht
Jensen/Wikimedia
Commons/Public
Domain.
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1797–1872 1839–1921 1842–1919

Jean-Marie Constant
Duhamel was a French
mathematician and
physicist. In vibrations he is
known for the Duhamel
integral.

Julius Ferdinand von
Hann was an Austrian
meteorologist. The Hanning
window used in signal
processing is named after
him.

John William Strutt,
3rd Baron Rayleigh, was
a British scientist who
made extensive
contributions to physics.
He wrote the classic book
The Theory of Sound.

1847–1922 1850–1925 1856–1927

Alexander Graham Bell
was a Scottish scientist and
engineer who invented the
first practical telephone. The
decibel (dB) was named in
his honour.

Oliver Heaviside was an
English mathematician and
physicist. The unit step
function was named as the
Heaviside function after him.

Carl David Tolmé
Runge was a German
mathematician and
physicist. He was
co-developer of the
Runge–Kutta method.



�

� �

�

304 Appendix H Some Influential Scientists in Topics Related to This Book

1857–1894 1862–1943 1867–1944

Heinrich Rudolf Hertz
was a German physicist. The
unit of frequency, cycle per
second, or hertz (Hz), was
named after him. Source:
Robert Krewaldt/Wikimedia
Commons/Public Domain.

David Hilbert was a very
influential German
mathematician. The Hilbert
transform was named after
him.

Martin Wilhelm Kutta
was a German
mathematician. He was
co-developer of the
Runge–Kutta method.
Source: Wikimedia
Commons/Public
Domain.

1889–1976 1902–1984 1901–1989

Harry Nyquist was a
Swedish physicist and
engineer who made
important contributions to
theory in communications.
The Nyquist frequency is
named after him. Source:
Harry Nyquist/Wikimedia
Commons/American
Institute of Physics.

Paul Adrien Maurice Dirac
was an English theoretical
physicist who was very
influential in the twentieth
century. The Dirac delta
function was named
after him.

Jacob Pieter Den Hartog
was a Dutch–American
mechanical engineer and
academic. He was one of
the great vibration
engineers of the twentieth
century.
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1905–1982 1916–2001

Hendrik Wade Bode was
an American engineer,
researcher, and inventor.
The frequency response
function used in control
theory is named the Bode
plot after him.

Claude Elwood Shannon
was an American
mathematician and electrical
engineer. He is known as ‘the
father of information theory’.
Source: Jacobs,
Konrad/Wikimedia
Commons/CC BY-SA 2.0 DE.

Peter D. Welch is an
American scientist in the
area of computer
simulation. He is known
for Welch’s method to
reduce signal noise.
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accelerance 15, 23, 28, 33, 35, 36, 216–221, 224,

229, 237–242, 246
aliasing on the (See aliasing)
point 217, 223
sampling effects on 62, 71–77
transfer 220, 223

accelerometer 3, 4, 215, 224
aliasing 48–53, 224, 229, 279–285

on the accelerance 71–77
on the mobility 66–71
on the receptance 62–65, 282–284

amplifier
conditioning 4, 93, 94, 159, 160
power 3, 4, 93, 94, 144, 152, 159, 160

antinode 177
anti-resonance (frequency) 169, 170–175,

177–181, 183–187, 197, 198, 207, 210, 215,
223, 256

Argand diagram 25
armature 93, 94, 152

b
base-excited system. See vibration isolator
beam 169, 193, 194, 201–209, 212, 213, 215,

223–233, 251–256
Euler-Bernoulli 201
fixed-fixed 204, 206
fixed-free (cantilever) 203, 205–209, 215,

223–229, 251–256
free-free 205, 206
pinned-pinned (simply-supported) 203, 204,
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beating 263
bias error 108, 134, 138–140, 144, 148, 157
Bode plot 305
boundary 196, 197, 203, 206, 211, 212

fixed 196, 203
free 196, 203
pinned 203

c
causal system 288
chain-like system 169–193, 210
coherence function 135–151, 154–157, 161–163,

167
commutative property 288
continuous system 169, 193–209, 211–213
convolution 5, 6, 13, 78, 80–82, 85–87, 100,

119–121, 129, 216, 220, 224, 263, 287–299
circular 120, 121, 129, 296–299

Cross Power Spectral Density (CPSD) 134–138,
144, 145, 167, 168

cross-sectional area 193, 201, 211, 212
current mode 94, 152, 216, 220, 224, 243

d
damping 10, 11, 131, 139, 168

control 24, 28
critical 12
estimation 25, 29–35, 157–166, 168
force 11, 20–22, 197
-like behaviour 169
matrix 170, 173, 181, 182, 210, 217
modal 182, 202
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damping (contd.)
ratio 12, 35, 182, 197, 199, 208, 217, 225, 236,
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Rayleigh (proportional) 181, 210
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212, 225, 253
viscous 35, 197

data truncation 77–85, 91
DC 21, 39, 40, 42, 50, 67, 74, 262, 296
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bel 267
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delta function 13–15, 17, 46, 47, 195, 275–277,

289, 292, 293, 304
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225, 253
dispersive 203
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axial 193, 202, 212
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displacement transmissibility. See transmissibility
displacement vector 170, 171, 181, 260

modal 181, 182
distributed parameter 169, 181, 193–195, 201,
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Duhamel integral 287, 303

e
eigenvalue 175, 176, 179, 210
eigenvector 175, 176, 181, 185, 189, 210
electrodynamic shaker 3, 4, 93, 94, 96, 117, 131,

152, 223, 237, 246
coil 93, 94

energy spectral density (ESD) 98, 110–117
envelope 12, 13, 17–19, 36, 203, 249, 263–265,

292–294
Euler’s formula 12, 41
Euler’s method 269–271
excitation 3, 4, 11, 19–22, 151–157, 167

harmonic 19–21, 158, 170, 182, 235
impulse 13–17, 223
random 144–151, 215, 220, 229, 241
transient 131–144, 163–166, 220, 223,
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expectation operator 133

f
finite element analysis (FEA) 5
force 3–6

axial 193, 202, 211, 212
chirp (swept sine) 125–129
half-sine impulse 124–129, 139
harmonic 19, 171, 195, 202
impulse 47, 122, 123, 125–129
lateral 201, 202, 212
modal 182, 194, 202
random 125–129, 145, 147–151, 154
shear 201, 203, 212

force drop out 152–157, 168
forced vibration 173, 181, 185, 190, 193, 201
force-excited system. See vibration isolator
force gauge 3, 4, 93–96, 151–153, 216, 223, 224,

238, 242, 250, 251
force relationship 21, 22, 151
force transmissibility. See transmissibility
force vector 170, 171, 210

modal 182
Fourier analysis 2, 6
Fourier series (FS) 39–47, 53, 57, 58, 199, 277,

302
Fourier transform (FT) 5, 6, 39, 41–46, 57, 58,

281, 282, 287, 291–294
amplitude density 44, 47, 53
discrete (DFT) 39, 48–51, 53–58, 275, 279,

281–285, 296
discrete time (DTFT) 45–49, 53–58
fast (FFT) 49
inverse (IFT) 5, 6, 53–58, 217, 224
inverse discrete time (IDTFT) 54–58, 296

free vibration, free vibration 11–14, 17–19, 36,
175–178, 195–197, 202, 203

frequency response function (FRF) 4–6, 19,
22–36, 39, 44, 45, 49–57, 131–151, 170–175,
177, 180, 181, 183–190, 193, 197–200, 203,
206–212, 215–258, 267, 281–285, 292–296,
298

effects on using the IDFT of IRFs 91
half power point 28–32, 36, 160, 221, 222, 230,
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H1 estimator 134–151, 167, 168
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maximum response, peak 28, 221, 257
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g
grounded structure 229

h
Heaviside function 14, 15, 45, 292, 303
Hilbert transform 18, 19, 263–265, 304
Hooke’s law 301
host structure 157, 158, 215, 234–238, 241–242,
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Hz 20, 304
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impact hammer 3, 4, 93–96, 113, 117, 122,

131–133, 135, 139, 167, 220, 223, 229, 233,
252
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impedance 33–36, 234, 246
impulse response function (IRF) 5, 6, 13–19, 22,

35, 36, 39, 44, 49–57, 119–127, 129, 147,
148, 181, 188–193, 197–200, 203–212, 217,
218, 220, 224–227, 239, 243, 246–249,
252–256, 275, 281–284, 287–294, 296–299

sampling effects on 85–90
isolation frequency. See vibration isolation
isolator. See vibration isolation

l
laser velocity sensor 224
law of diminishing returns 105
leakage 100–105, 144
linear, time invariant (LTI) system 287
logarithmic scale 107, 172, 197, 207, 267, 268,

301
lumped parameter 9, 10, 151, 169–171, 180–182,

193, 195, 197, 210–211, 213, 215, 220, 223,
224, 229, 234, 256, 269

m
mass 9, 10

apparent 33, 35, 36
control 24, 25, 153, 183
estimation 33–35, 160
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-like behaviour 169, 183
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modal matrix 182, 185, 189
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root 99

mechanical (engineering) vibration 1, 2
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mobility 23, 27, 28, 33–36, 241, 246
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modal constant 221, 222, 231, 253
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modal decomposition 181–188
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modal model 197, 198, 207, 215, 216, 220, 221,

223, 229–231, 233, 256
modal participation factor 194, 195, 201, 202
modal response 183–188, 190, 193, 197, 201,

203, 207, 229, 253
mode shape 175–177, 180–188, 193–197, 199,

201–206, 208, 210–212, 224, 227, 229–233,
256

mass-normalised 185
undamped 181

moment
bending 201–203, 206, 212

multi-degree-of-freedom (MDOF) 169, 170, 171,
175, 180–182, 184, 189, 195, 197, 210, 211,
215, 251–256

2DOF 184, 215, 216–224, 229, 256
3DOF 170–181, 183–193, 197, 198

n
natural frequency 169, 170, 183, 193, 195, 211,

212, 217, 220–225, 227, 229–231, 233,
235–239, 241, 243, 250–253, 255–258
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undamped 12, 35, 119, 175–179, 189, 190,
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noise 131–151, 168
nontrivial solution 14
numerical differentiation 259–262
numerical integration 6, 121–123, 125, 126, 129,

259–262, 269, 270, 272, 279
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148, 216, 219, 223, 240, 244

Nyquist frequency 279, 304
Nyquist–Shannon sampling theorem 279

o
operational frequency 164–166
ordinary differential equations (ODEs) 193, 194,

201, 211, 269
orthogonal 181, 194, 201
oscilloscope 4, 98

p
Parseval’s theorem 97, 98, 100, 102, 108, 109,

111, 114, 116, 302
partial differential equations (PDEs) 193, 201,
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anti- 21, 22, 172, 177, 183
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out-of- 172
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r
random error 108, 144, 146, 148, 161, 168
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transfer 170, 171, 173–175, 177–180, 184–188,
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reciprocity 170, 181, 183, 220, 252
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175–179, 181, 183, 197, 198, 207, 215, 221,
223, 230, 231, 234, 236, 237, 242, 256, 273

rigid-body mode 195, 196, 205

rod 169, 193–203, 207, 211–213
fixed-fixed 196, 197
fixed-free 196, 197–200
free-free 195, 196

rotation 202, 206, 212
rotational inertia 201
Runge-Kutta method 121, 129, 193, 220, 269,

271–273, 303, 304

s
sampling frequency 47–49, 51, 53, 57, 101, 197,

200, 209, 216, 224, 279, 282, 284, 285
angular 279

second moment of area 201, 212
shaker-structure interaction 151–157, 168
sifting property 47, 195, 276, 277, 289, 293
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analytical 263
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signal to noise ratio (SNR) 137–144, 168
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undamped system 175
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stepped-sine approach 98
stiffness 9–11

bending 201
contact 94, 95



�

� �

�

Index 311

control 24, 25, 183
dynamic 33, 34, 36, 151–155, 159, 206, 218,

225, 234–236, 239, 246, 254
estimation 33–35, 159–163, 168
force 11, 20–22, 193, 201
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Taylor series 269, 270, 302
temperature variation 148
time-domain integration 4
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vibration control 1, 215, 234
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